Little Alamance Creek (Burlington Park) Stream Restoration 2014 Monitoring Report Monitoring Year 3 of 5

Alamance County, NC Cape Fear River Basin Cataloging Unit: 03030002 NCEEP Project Number: 92372 NCEEP Contract Number: 4998

Submitted To:

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

Final – 2014 Monitoring Report – Year 3 of 5

Project Construction Completed: 2012 Data Collection for Monitoring Year 3 of 5 Report Submitted: December 2014

Little Alamance Creek (Burlington Park) Stream Restoration 2014 Monitoring Report Monitoring Year 3 of 5

Alamance County, NC Cape Fear River Basin

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

> Prepared by: EEE Consulting, Inc. 601 Cascade Pointe Lane, Suite 101 Cary, NC 27513

> > Project Manager: Ray Bode, PWS (919) 650-2463 ext. 225 rbode@eee-consulting.com

> > > December 2014

FINAL

TABLE OF CONTENTS

1.	Executive Summary/Project Abstract	2
	Methodology	
	2.1 Stream Survey Methodology	
	2.2 Vegetation Survey Methodology	
	References	

APPENDICES, FIGURES, and TABLES

Figure 1:	Vicinity Map
Table 1:	Project Components and Mitigation Credits
Table 2:	Project Activity and Reporting History
Table 3:	Project Contacts Table
Table 4:	Project Attribute Table

Appendix B: Visual Assessment Data

Figure 2:	Current Condition Plan View
Figure 3:	Conservation Easement Marked Posts
Figure 4:	Final Conservation Easement Plat
Figure 5:	Conservation Easement Coordinate List
Table 5:	Visual Stream Morphology Stability Assessment
Table 6:	Vegetation Condition Assessment
Photo Log 1:	Established Photo Stations
Photo Log 2:	Vegetation Plot Photos

Appendix C: Vegetation Plot Data

Table 7:Vegetation Plot Success by Project Asset Type

 Table 8:
 CVS Stem Count Total and Planted with/without Livestakes by Plot and Species

Appendix D: Stream Survey Data

Figure 6:	Cross Section with Annual Overlays
Figure 7:	Longitudinal Profiles with Annual Overlays
Figure 8:	Pebble Counts with Annual Overlays
Table 9:	Stream Bank Erosion Pin Data Table
Table 10a:	Baseline Stream Data Summary
Table 10b:	Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic
	Containment Parameter Distributions)
Table 11a:	Monitoring – Cross-Section Morphology Data Table
Table 11b:	Monitoring – Stream Reach Morphology Data Table

Appendix E: Hydrologic Data

Table 12:	Verification of Bankfull Events
Figure 9:	Monthly Rainfall Data

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 3 of 5; Submitted: December 2014 FINAL

1.0 EXECUTIVE SUMMARY / PROJECT ABSTRACT

The primary goals of this stream restoration project focus on improving water quality, enhancing flood attenuation, and restoring aquatic habitat. These goals will be accomplished by the following objectives:

- Reducing non-point sources of pollution associated with former lawn maintenance in the park area by providing a vegetative buffer adjacent to Little Alamance Creek and its unnamed tributary (UT) and the installation of stormwater best management practices to treat surface runoff. The riparian buffer will remain in a State-owned conservation easement in perpetuity.
- Reducing sedimentation on-site and in downstream receiving waters through a reduction of bank erosion associated with current vegetation maintenance practices and by providing a forested vegetative buffer adjacent to Little Alamance Creek and its tributary.
- Reestablishing stream stability and the capacity to transport watershed flows and sediment loads by restoring stable dimension, pattern, and profile.
- Promoting floodwater attenuation through increased flood storage capacity by construction of bankfull benches along Little Alamance Creek and its tributary.
- Improving aquatic habitat by enhancing stream bed variability.

The Site consists of 2,738 linear feet of enhanced (Level I and II) channel along Little Alamance Creek and its UT. The project is located in City Park in the City of Burlington, Alamance County, North Carolina (Figure 1). The surrounding land use is recreational and the project is easily accessible by the public. Little Alamance Creek and its UT are located in the 8-digit Hydrologic Unit Code (HUC) 03030002; the 14-digit Local Watershed Unit HUC 03030002-040010; and the North Carolina Division of Water Resources (NCDWR) Subbasin 03-06-03 (NCDWR, 2005). The project lies within the Southern Outer Piedmont ecoregion of the Piedmont physiographic province of NC (Griffith *et al.*, 2002). The North Carolina Ecosystem Enhancement Program (NCEEP) has identified the Cape Fear HUC 03030002, and in particular Little Alamance Creek, in their Local Watershed Plan as needing repair along with conservation opportunities. Watersheds in this plan exhibit the need and opportunity for stream and riparian buffer restoration (NCDENR, 2001). In 2000, Little Alamance Creek was listed as impaired by the NCDWR due to poor stream biological ratings (NCEEP, 2008).

The Little Alamance Creek Stream Restoration Site was originally planted in April, 2012. On September 11, 2012, the site was inspected at 15 locations by NCEEP and vegetative sampling reported higher mortality than contractually permissible. Of the 15 inspection plots, 6 did not meet the 80 percent survival warranty. The areas identified as needing supplemental planting were replanted on December 12, 2012. For purposes of long term monitoring, 8 vegetation sampling plots were established during Monitoring Year 1 (MY1). In Monitoring Year 3 (MY3), vegetation plots 3 and 4 were moved to avoid the utility easements. MY3 efforts report the majority of the site is

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 3 of 5; Submitted: December 2014

not meeting the planted stem success criteria. Only vegetation plots 1, 4, and 6 have met the 320 stems per acre success requirement (Appendix C; Table 7). Volunteer species are establishing on site as expected and thus increasing the overall stems per acre. Volunteer species have increased the stems per acre over 320 for all plots except vegetation plot 7 and 8 (Appendix C; Table 8).

EEE has also identified several vegetation and stream problem areas during MY3 field efforts. These problem areas are listed below.

Name	Station#/Range	Feature Category	Comments
VPA1	11+40 to 11+60 UT RT< Bank	Invasive/Exotic Populations	<i>Vitis labrusca, Rubus argutus, Ligustrum sinense,</i> and <i>Pueraria montana</i> new to MY3. <i>Rosa multiflora</i> still present.
VPA2	10+50 to 10+80 UT LT Bank	Invasive/Exotic Populations	No observable changes to Ligustrum sinense.
VPA3	11+50 to 11+80 Mainstem RT Bank	Invasive/Exotic Populations	No observable changes to <i>Ligustrum sinense</i> , <i>Hedera helix</i> , <i>Morus alba</i> .
VPA4	13+50 to 14+00 Mainstem RT Bank	Invasive/Exotic Populations	No observable changes to Ligustrum sinens, morus alba.
VPA5	29+00 to 30+00 Mainstem RT Bank	Beaver damage and Invasive/Exotic Populations	<i>Castor canadensis:</i> Fresh beaver chews, slides, and tracks; <i>Rosa multiflora</i>
VPA6	29+50 to 30+00 Mainstem LT Bank	Invasive/Exotic Populations	Rosa multiflora; Cuscuta sp new to MY3.
VPA7	35+00 to 35+50 Mainstem LT Bank	Invasive/Exotic Populations	<i>Calystegia sp.</i> now dominates this area, while <i>Clemetis virginiana</i> has declined.
VPA8	16+75 Mainstem RT Bank	Level Spreader	Debris in level spreader
VPA9	32+75 Mainstem LT Bank	Bare areas	Bare soil observed below stormwater outflow from building above the left bank.
VPA10	31+25 Mainstem RT Bank	Easement Encroachment	Mowing in the easement
VPA11	30+75 Mainstem RT Bank	Easement Encroachment	Mowing encroached into VP7.
VPA12	34+00 to 36+50 Mainstem RT Bank	Invasive/Exotic Populations	Glechoma hederacea, Vitus sp, Cuscuta sp, and Calystegia sp new to location.
VPA13	27+10 Mainstem RT Bank	Easement Encroachment	Trench in easement diverts stormwater into the channel near the sewer pipe.
VPA14	14+00 Mainstem LT Bank	Invasive/Exotic Populations	Cuscuta sp observed near XS3.

Vegetation Problem Areas

Note:

VPA1 to VPA7 identified in MY2.

VPA8 and VPA9 identified in May 2014 Site Assessment.

VPA10 to VPA14 identified in MY3.

N			
Name	Station#/Range	Feature Category	Comments
SPA1	12+50 to 13+25 UT RT bank	Bank Erosion	No observed changes.
SPA2	11+00 to 12+00 Mainstem LT bank	Bank Erosion	No observed changes.
SPA3	14+50 to 15+00 Mainstem LT bank	Bank Erosion	Re-vegetation. Minimally observable erosion.
SPA4	29+60 to 30+00 Mainstem RT bank	Bank Erosion	No observed changes. Fresh beaver chews observed.
SPA5	10+00 to 10+25 UT RT bank	Bank Erosion	No observed changes.
SPA6	28+60 to 29+00 Mainstem RT bank	Structure failure	No observed changes. Erosion at rootwads occurs opposite stormwater RCP outfall.
SPA7	17+75 to 18+00 Mainstem RT bank	Bank Erosion	No observed changes.
SPA8	27+00 Mainstem LT bank	Bank Erosion	No observed changes. Erosion occurring around pipe.
SPA9	35+25 to 35+50 Mainstem LT bank	Bank Erosion	No observed changes.
SPA10	14+50 UT/Mainstem confluence	Channel aggradation	Identified in MY2 as SPA3. Dissipated in May 2014 Site Assessment. Re-observed in MY3. Separated from SPA 3 due to re-vegetation.
SPA11	19+00 Mainstem LT bank	Storm debris	Not observed in MY3.
SPA12	25+25 to 25+75 Mainstem LT bank	Bank Erosion	Eddy effect when water levels are high
SPA13	22+50 to 22+75 Mainstem RT bank	Channel aggradation and Bank Erosion	Erosion and aggradation observed opposite of RCP.
SPA14	30+40 to 30+75 Mainstem RT bank	Structure erosion	Erosion and incision at root wads.
SPA15	29+25 to 31+50 Mainstem RT bank	Beaver Damage	Fresh beaver chews, tracks, slides.
SPA16	14+00 to 14+10 UT Mid-channel	Channel aggradation	Lateral channel bar accumulation in riffle.
SPA17	27+15 to 27+25 Mainstem LT bank	Bank Erosion	Observed left bank undercutting.
SPA18	31+15 to 31+25 Mainstem RT bank	Bank Erosion	Observed right bank undercutting. 7ft wide by 3ft deep
SPA19	32+00 to 32+25 Mainstem mid- channel	Bank Erosion	Observed large debris on right bank above downed log.
SPA20	31+ 40 Mainstem Mid-channel	Beaver Damage	Beaver dam observed.
SPA 21	15+80 Mainstem mid-channel	Beaver Dam	New beaver dam location as of November 14, 2014.

Stream Problem Areas

Note:

SPA1 to SPA4 identified in MY2

SPA5 to SPA11 identified in Site Assessment in May 2014

SPA12 to SPA21 identified in MY3

Wetland mitigation is not a part of this project.

Summary information/data related to the occurrence of items such as beaver encroachment and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 3 of 5; Submitted: December 2014 formerly found in these reports can be found in the Mitigation Plan (formerly the Restoration Plan). This document is available on NCEEP's website. All raw data supporting the tables and figures in the appendices is available from NCEEP upon request.

2.0 METHODOLOGY

All monitoring methodologies follow NCEEP's 2011 *Monitoring Requirements and Performance Standards for Stream and/or Wetland Mitigation* (NCEEP, 2011). This monitoring report is consistent with NCEEP's *Monitoring Report Template Version 1.5* adopted June 8, 2012. GPS data was collected using sub-meter accuracy Trimble Geo XH handheld unit. Survey data was obtained using Nikon NPL-322 Total Station with rod and prism. Rod height varied from 4.44usf to 25.45usf. Stream and vegetation problem areas were identified and noted in the field on As-Built Plan Sheets prepared by ARCADIS G&M of North Carolina (ARCADIS, 2012). Twenty permanent photo stations were established during the project set up by EEE Consulting, Inc. (EEE) and photographs were taken from these locations (Figure 2). Photographs were taken using an IPad Theodolite application.

2.1 STREAM SURVEY METHODOLOGY

Prior to Year 1 monitoring efforts, EEE established eight permanent riffle cross-sections and six permanent pool cross sections (Figure 2). Surveyed and GPS points were collected on both banks of each established cross section, marked with steel electrical metallic tubing (EMT) driven into the ground. Yellow plastic caps were attached to each pin for safety and visual assistance. The entire length of mitigation, 2,725 linear feet of stream profile, was surveyed. Stream monitoring and geomorphological surveys were preformed consistent with the USACE 2003 *Stream Mitigation Guidelines* and the USDA 1994 Forest Service Manual *Stream Channel Reference Sites: An Illustrated Guide to Field Technique* (USACE, 2003; Harrelson *et al*, 1994). Stream survey data was collected using a Nikon NPL-322 total station with a Recon data logger and is georeferenced in NAD83-State Plane Feet-FIPS3200. Data were analyzed using RIVERMorph. Pebble counts were conducted consistent with the 1954 Wolman Pebble Count technique (modified by Rosgen, 1996). A random sample of 100 pebbles from each cross section was collected within the wetted perimeter of the channel. Samples were not taken from the banks. Photographs were taken at each cross section. A photo was taken from the left bank looking towards the right bank (Appendix B: Photo Log 1).

2.2 VEGETATION SURVEY METHODOLOGY

Prior to Year 1 monitoring efforts, EEE established eight vegetation plots per the CVS-EEP vegetation monitoring protocol (Figure 2). Five plots are 10 meters by 10 meters in size and 2 plots, (VP 6 and 7) are 20 meters by 5 meters in size. Per request of EEP, prior to Year 3 monitoring, VP 3 and 4 were relocated so that they no longer intersect utility easements (Figure 2). All four corners of each established vegetation plot were surveyed and GPS points were collected. Vegetation monitoring was performed in accordance with the 2008 CVS-EEP Protocol for Recording Vegetation for Level 1-2 Plot Sampling Only, Version 4.2 (Lee *et al*, 2008). Level 2 sampling was performed for each vegetation plot. Each corner of the vegetation plot was marked

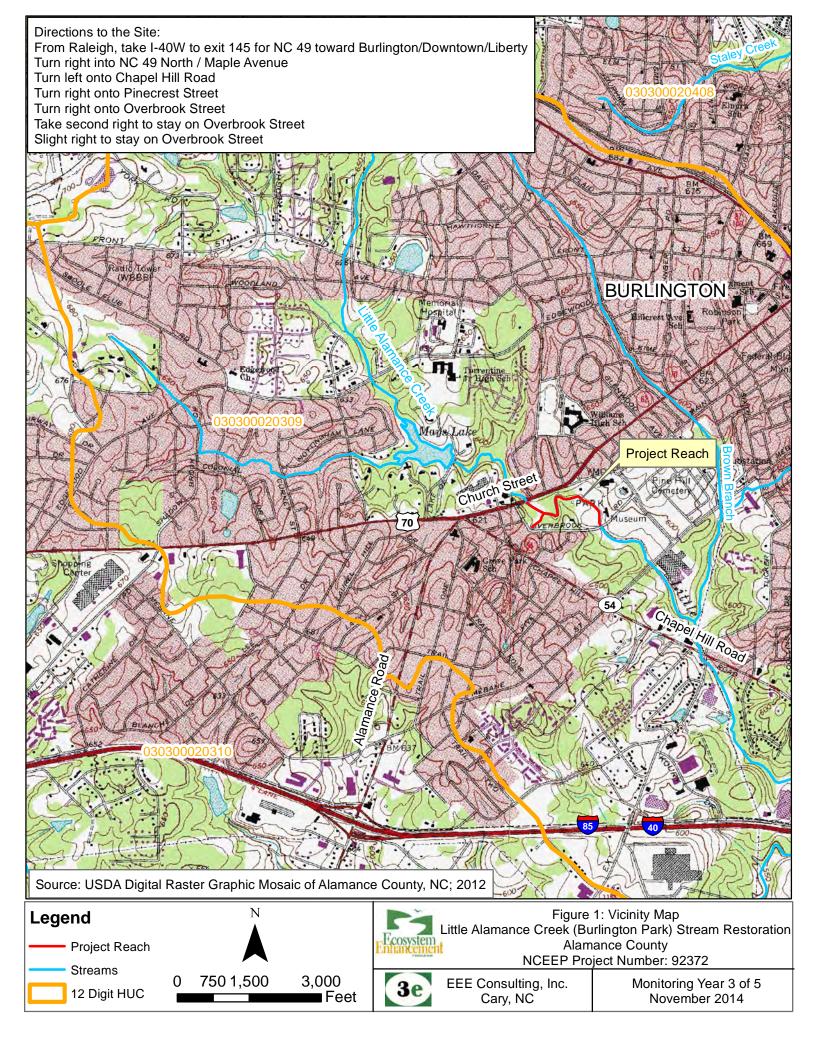
Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 3 of 5; Submitted: December 2014

with steel EMT driven into the ground. Because the project is within a public park, minimal flagging was used to mark the stems and the vegetation plot corner pins. Orange plastic caps were attached to each pin for safety and visual assistance. Minimal orange flagging was used to mark only planted stems during vegetation counts. Photographs were taken at each vegetation plot from the southwest corner facing the northeast corner (Appendix B: Photo Log 1).

3.0 REFERENCES

- ARCADIS G&M of North Carolina, 2012. As-Built Survey of Little Alamance Creek Stream Restoration. Prepared for the NC Ecosystem Enhancement Program.
- Griffith, Glenn, J. Omemik, J. Comstock, 2002. Ecoregions of North Carolina Regional Descriptions. U.S. Department of Agriculture, Natural Resources Conservation Service. Corvallis. OR.
- Harrelson, Cheryl C., C.L. Rawlins, John P. Potyondy, 1994. US Department of Agriculture, Forest Service. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Available URL: <u>http://www.fs.fed.us/rm/pubs_rm/rm_gtr245.pdf</u>. [Date Accessed: 4 January 2013].
- Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation, Version 4.0 Available URL: <u>http://cvs.bio.unc.edu/methods.htm</u>. [Date Accessed: 4 January 2013].
- NC Division of Water Quality, 2005. Cape Fear River Basin Water Quality Plan. Available URL: <u>http://portal.ncdenr.org/web/wq/ps/bpu/basin/capefear/2005</u>. [Date Accessed: 4 January 2013].
- NC Department of Environment and Natural Resources, 2001. Watershed Restoration Plan for the Cape Fear River Basin. Prepared by: NCDENR, NCDWQ, and NCWRP. Available URL: <u>http://www.nceep.net/services/restplans/cap e_fear_2001.pdf</u>. [Date Accessed: 4 January 2013].
- NC Ecosystem Enhancement Program, 2008. Little Alamance, Travis, & Tickle Creek Watershed Report & Project Atlas: An Ecosystem Enhancement Program Funded Local Watershed Plan Phase III. Prepared by Piedmond Triad Council of Governments. Available URL: <u>http://www.ptcog.org/planning_services/environmental_planning/documents/water_LATTPhaseIII.</u> <u>pdf.</u> [Date Accessed: 4 January 2013].
- NC Ecosystem Enhancement Program, 2011. Monitoring Requirements and Performance Standards for Stream and/or Wetland Mitigation. Available URL: <u>http://portal.ncdenr.org/c/document_library/get_file?p_1_id=1169848&folderId=2288101&name=D_LFE-39234.pdf</u>. [Date Accessed: 4 January 2013].

RIVERMorph Stream Restoration Software, Version 5.1.0. Rivermorph LLC.


Rosgen, D.L., 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs. CO.

US Army Corps of Engineers, 2003. Stream Mitigation Guidelines. Prepared by: USACE, NCDWQ, USEPA, NCWRC. Available URL: <u>http://www.in.gov/idem/files/headwater_nc_stream_mitigation_guide.pdf</u>. [Date Accessed: 4 January 2013].

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 3 of 5; Submitted: December 2014

Appendix A: Project Vicinity Map and Background Tables

Figure 1: Project Vicinity Map Table 1: Project Components and Mitigation Credits Table 2: Project Activity and Reporting History Table 3: Project Contacts Table Table 4: Project Attribute Table

							Mitigation C			k) / #92				
Stream Riparian Wetland							Non-riparian Wetland			Buffer		Nitrogen Nutrient Offset		Phosphorous Nutrient Offset
Туре		R	RE		R	RE	R		RE					
Totals	12	278	0											
							Project Comp	onents	5					
Project Component -or Reach ID	-	Stationing	g/Loc	ation	*		Existing Footage/Acr	eage	Appr (PI, Pl	I etc.)	Restoration Restoratio Equivale	on	Restoration Footage or Acreage**	Mitigation Ratio
Reach I (EII)			-	-25-1(32.5		Р		R		13	2.5:1
Reach I (EI)				·75-1′ ·25-1			412.5		-	_	R		206	1.5:1
Reach II – Tributary	(EI)			-25-14			432.5		Р		R		204	1.5:1
Reach III (EII)			15+	-50-19	9+00		327.5		_	_	R		106	2.5:1
Reach IV (EI)				·30-2′ ·60-26			632.5		Р		R		328	1.5:1
Reach V (EII)				-50-27			57.5		_	_			0	0
Reach VI (EII)			27+	-25-28	8+50		102.5	2.5 —		_	R		20	2.5:1
Reach VI (EI) 31+				1+75-33+00			147.5		_	_	R		83	1.5:1
Reach VI (R)			28+50-31+50			278	278 PI		יו	R		220	1:1	
Reach VII (EII)			33+	-50-36	6+50		315		_	_	R		98	2.5:1
						Co	omponent Su	Immatio	on		1			
Restoration Level	vel Stream Credit Length** (linear feet)		h** Riparian V (acre				riparian V (acres)			Buffer (square feet)		Upland (acres)		
					River	ine	Non-Riverine							
Restoration		220												
Enhancement														
Enhancement I		821												
Enhancement II		237												
Creation														
Preservation High Quality Preservation														
							BMP Elem	ents						
Element	L	ocation			Purpos	e/Funct	ion				Notes			
LS	F	Reach 1												
LS	F	Reach 4												

*Stationing/Location is not exact, but based on the stationing provided in the Record Drawings dated 10/2012.

**Credit Length is based on nearest point method determined by EEP staff. Reduced credits reflect pre-existing sewer & water easements and reduced buffer widths.

Table 2. Project Activity and Reporting HistoryLittle Alamance Creek (Burlington Park) Stream Restoration/EEP Number (92372)

Elapsed Time Since Grading Complete: 3 yrs 1 month

Elapsed Time Since Planting Complete: 3 yrs 1 month

Number of Reporting Years¹: 3

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Institution Date	Nov-06	N/A
Categorical Exclusion	Sep-07	N/A
404 Permit Date	Apr-08	N/A
Restoration Plan	Jan-08	N/A
Final Design – Construction Plans	Sep-10	N/A
Construction	Feb-12	Apr-12
Seeding, bare roots, and live stake planting	Feb-12	Apr-12
Bare Root - Supplemental Planting	N/A	Dec-12
Mitigation Plan / As-built (Year 0 Monitoring - baseline)	N/A	N/A
Year 1 Monitoring	Mar-13	Jun-13
Year 2 Monitoring	Nov-13	Jan-14
Year 3 Monitoring	Oct-14	Nov-14
Year 4 Monitoring	TBD	TBD
Year 5 Monitoring	TBD	TBD

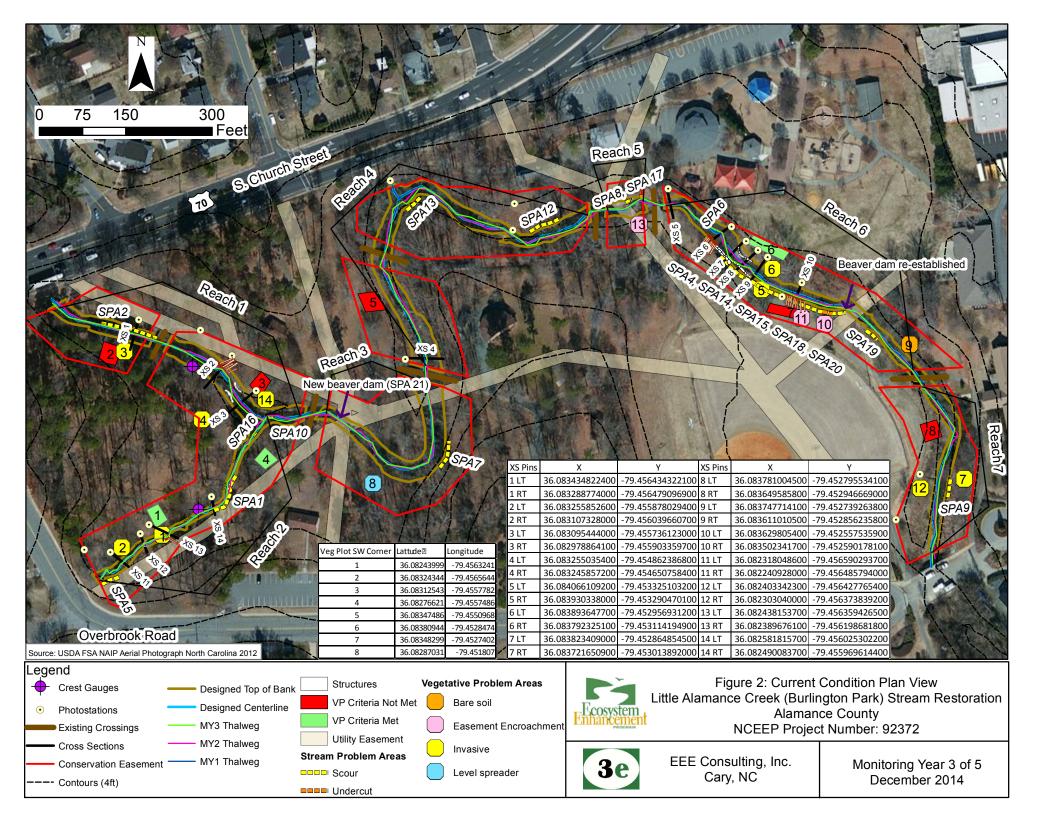
Due to contracting delays, no baseline data was collected for this project. Although there are no baseline cross sections to compare with MY1 (2013) measurements, the 2013 cross sections will serve as an adequate baseline for the remaining monitoring period. Similarly, no baseline vegetation data was collected until March 2013, approximately 13 months after planting occurred in February 2012.

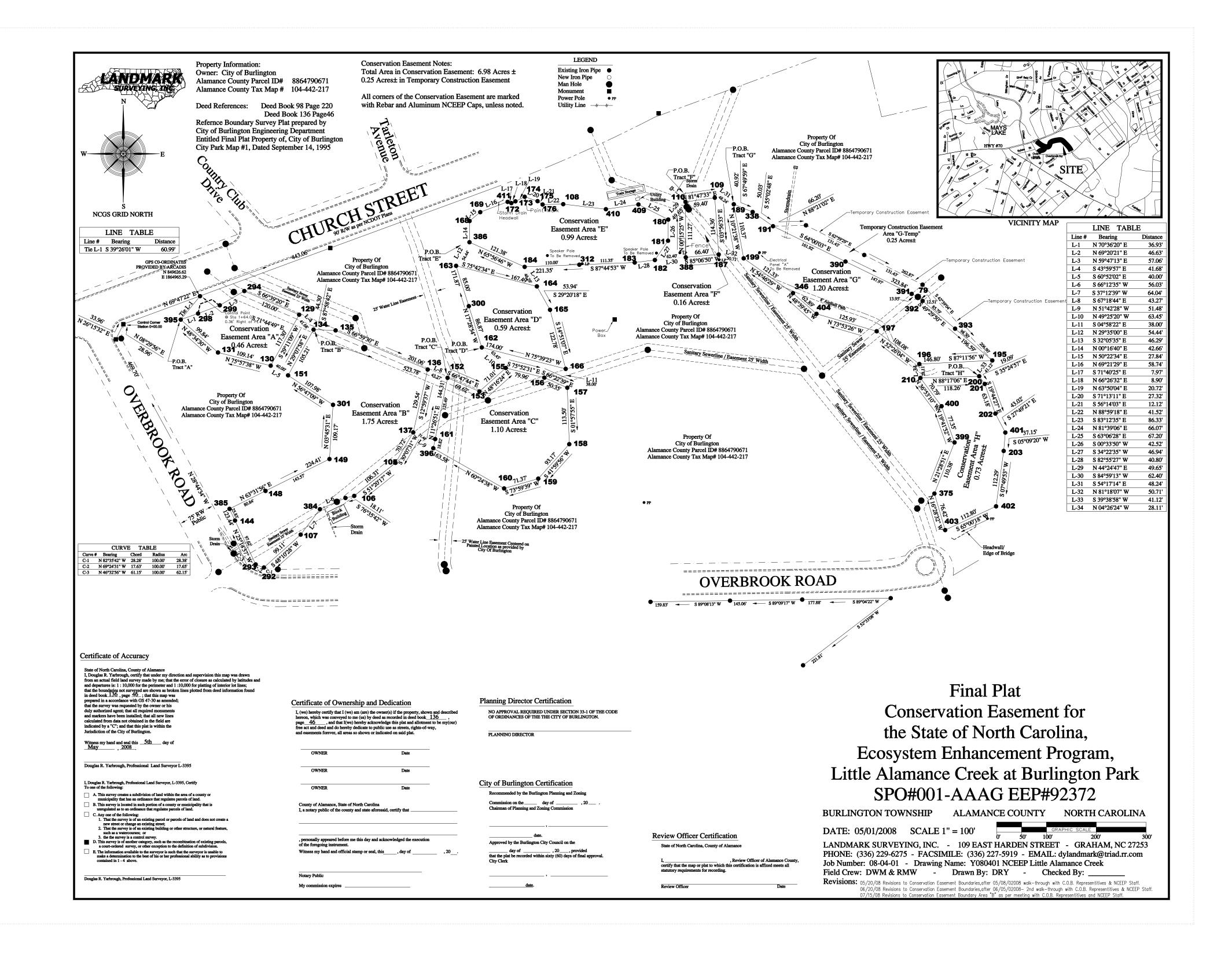
Bolded items are examples of those items that are not standard, but may come up and should be included

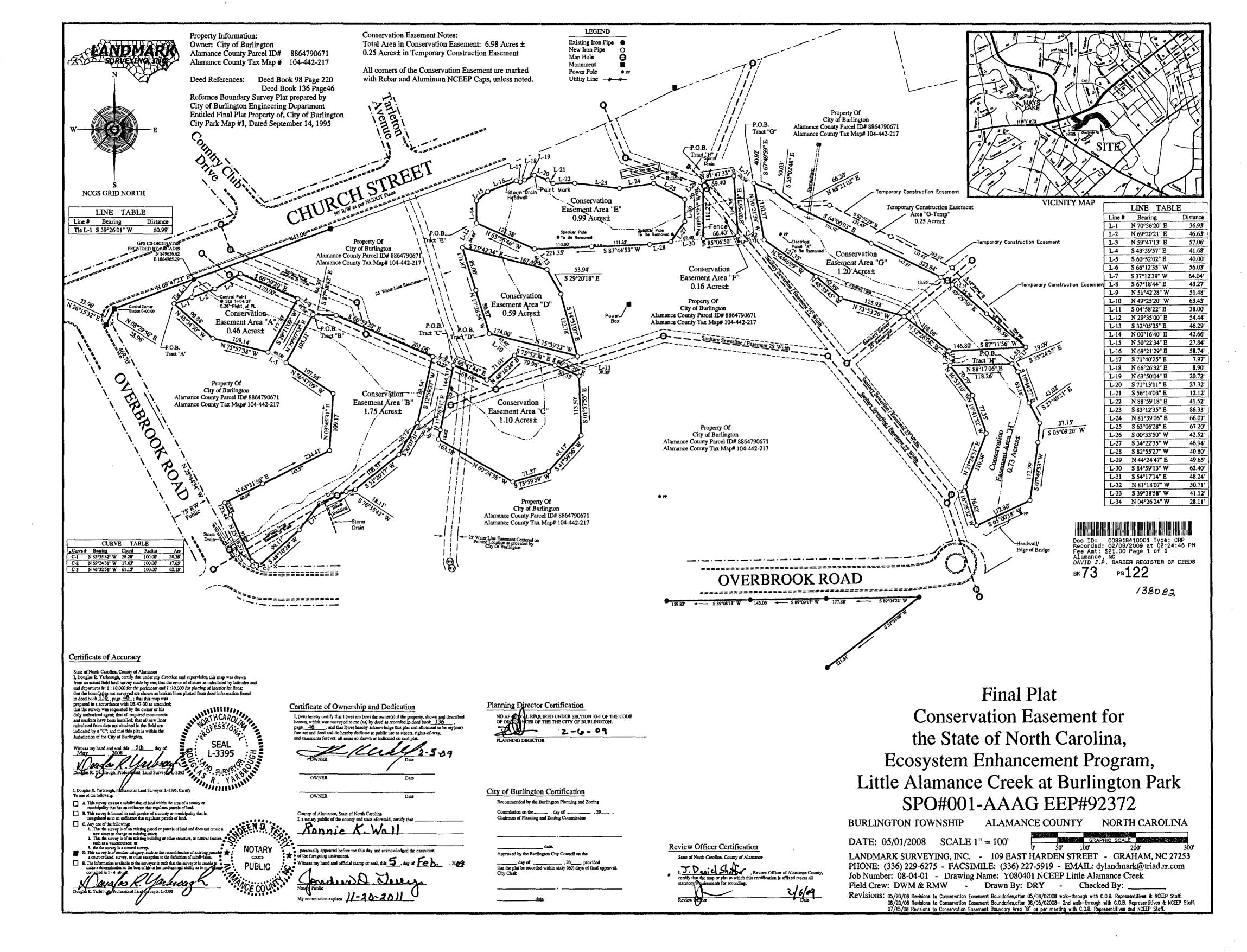
Non-bolded items represent events that are standard components over the course of a typical project.

The above are obviously not the extent of potential relevant project activities, but are just provided as example as part of this exhibit.

If planting and morphology are on split monitoring schedules that should be made clear in the table


1 = Equals the number of reports or data points produced excluding the baseline


	Table 3. Project Contacts Table
Little Alamance Creek (Burlington Park) Stream Restoration/EEP Number (92372)
Designer	ARCADIS G&M of North Carolina, Inc
Designer	801 Corporate Drive, Suite 300
	Raleigh, NC 27607
Primary project design POC	Robert Lepsic (919) 854-1282 ext. 195
Construction Contractor	Shamrock Environmental Corporation
	6106 Corporate Park Drive
	Browns Summit, NC 27214
Construction contractor POC	(336) 375-1989
Survey Contractor	Turner Land Surveying, PLLC
-	3201 Glenridge Drive
	Raleigh, NC 27604
Survey contractor POC	Elisabeth Turner (919) 875-1378
Planting Contractor	Carolina Wetland Services
	550 East Westinghouse Boulevard
	Charlotte, NC 28273
Planting contractor POC	(704) 527-1177
Seeding Contractor	Information Not available
Contractor point of contact	POC name and phone
Seed Mix Sources	Information Not available
Nursery Stock Suppliers	Native, Inc. (704) 527-1177
Monitoring Performers	EEE Consulting, Inc.
	601 Cascade Pointe Lane
	Suite 101
	Cary, NC 27513
Stream Monitoring POC	Ray Bode, PWS (919) 650-2463 ext. 225
Vegetation Monitoring POC	Tina Sekula, PWS (919) 650-2463 ext. 223


	Table	e 4. Project	Attribute Table)					
Little Alamance	Creek (Burling	gton Park) S	tream Restora	tion/EEP Num	ber (92372)				
		Project Info							
Project Name		ittle Alamance Creek (Burlington Park) Stream Restoration							
County	Alamance Cou	nty							
Project Area (acres)	7.06 acres								
Project Coordinates (latitude and longitude)	36.083566 ; -79								
		ct Watershed	Characteristic	8					
Physiographic Province		riedmont							
River Basin	Cape Fear								
USGS Hydrologic Unit 8-digit: 03030002		gic Unit 14-dig	it: 30300020400	10					
DWQ Sub-basin	03-06-03								
Project Drainage Area (acres)	2690 acres								
Project Drainage Area Percentage of Impervious Area	40 percent								
CGIA Land Use Classification	Forest Land								
	1		y Information		1				
Parameters	Reach I	Trib	Reach III	Reach IV	Reach V	Reach VI	Reach VII		
Length of Reach (linear feet)	445 lf	432.5 lf	327.5 lf	632.5 lf	57.5 lf	528 lf	315 lf		
/alley Classification	Type VIII	Type VIII	Type VIII	Type VIII	Type VIII	Type VIII	Type VIII		
Drainage area (acres)	2600 ac	124 ac	2630 ac	2650 ac	2655 ac	2680 ac	2690 ac		
NCDWQ Stream Identification Score	47.5	33	47.5	47.5	47.5	47.5	47.5		
NCDWQ Water Quality Classification	WS-V;NSW	WS-V;NSW	WS-V;NSW	WS-V;NSW	WS-V;NSW	WS-V;NSW	WS-V;NSW		
Morphological Description (stream type)	C/E5/1	E4/1	C/E5/1	C/E5/1	C/E5/1	C/E5/1	C/E5/1		
Evolutionary Trend	C4/1	C4/1	C4/1	C4/1	C4/1	C4/1	C4/1		
Jnderlying Mapped Soils			Cec	l fine sandy loarr	n (CbC2)		-		
Drainage Class				Well drained					
Soil Hydric Class				Non-Hydric					
Slope			6	to 10 percent sl	opes				
FEMA Classification	AE Floodzone	No Study	AE Floodzone	AE Floodzone	AE Floodzone	AE Floodzone	AE Floodzone		
Native Vegetation Community				Mixed Mesic For	rest				
Percent composition of exotic invasive vegetation				5 percent					
	R	egulatory Co	nsiderations						
Regulation	Applicable?	Resolved?		Supp	porting Documen	tation			
Waters of the United States - Section 404	Yes	Yes	1	Nationwide Permit 27 (Action ID SAW-2008-01198)					
Waters of the United States - Section 401	Yes	Yes	1	Nationwide Perm	it 27 (Action ID S	AW-2008-01198	3)		
Endangered Species Act	No	N/A			N/A		•		
Historic Preservation Act	No	N/A			N/A				
Coastal Zone Management Act (CZMA)/ Coastal Area									
Management Act (CAMA)	No	N/A			N/A				
FEMA Floodplain Compliance	Yes	Yes	FEMA	Floodplain Cons	istency Checklist	(Categorical Ex	clusion)		
Essential Fisheries Habitat	No	N/A			N/A				

Appendix B: Visual Assessment Data

Figure 2: Current Condition Plan View
Figure 3: Conservation Easement Marked Posts
Figure 4: Final Conservation Easement Plat
Figure 5: Conservation Easement Coordinate List
Table 5: Visual Stream Morphology Stability Assessment
Table 6: Vegetation Condition Assessment
Photo Log 1: Established Photo Stations
Photo Log 2: Vegetation Monitoring Plot Photos

AREA "A"

NORTH	EAST	Point #
849579.51554	1864926.55171	395
849591.77729	1864961.38155	298
849608.22978	1865005.01204	299
849636.94197	1865054.31867	294
849589.39149	1865164.49481	129
849486.98274	1865107.29342	130
849513.45974	1865001.41137	131
849579.51554	1864926.55171	395
01001010101	1001020100111	000
AREA "B"		
NORTH	EAST	Point #
849559.40556	1865193.45108	134
849557.84265	1865237.72626	134 35
849479.25598	1865422.79011	136
849353.03468	1865393.66448	130
849291.86683	1865358.17065	
849225.45240	1865275.15897	105
		106
849221.25010	1865257.53874	140
849198.64891	1865206.27156	384
849147.64645	1865167.54338	107
849081.54893	1865093.68513	292
849087.74837	1865077.18420	293
849176.03999	1865035.54448	144
849199.39922	1865024.52791	385
849235.42971	1865096.89567	148
849299.41895	1865225.41897	149
849408.35898	1865232.57548	301
849467.50926	1865142.23314	151
849559.40556	1865193.45108	134
AREA "C"		
NORTH	EAST	Point #
849462.56616	1865462.71229	152
849435.13638	1865526.69686	153
849482.39703	1865579.69130	155
849462.88378	1865657.23514	156
849442.70621	1865703.37024	157
849329.27516	1865707.26253	158
849260.03559	1865644.92151	159
849240.35724	1865576.32112	160
849321.13162	1865434.07191	396
849339.57571	1865437.80714	161
849462.56616	1865462.71229	152
AREA "D"		
NORTH	EAST	Point #
849523.67028	1865531.49915	162
849606.54503	1865505.41990	300
849687.60418	1865479.86867	163
849646.26097	1865642.17633	164
849599.23801	1865668.60583	165
849480.56349	1865700.07636	166
849523.67028	1865531.49915	162

AREA "E"

NORTH	EAST	Point #
849734.94933	1865506.74625	386
849777.61339	1865506.95303	168
849795.36536	1865528.39325	169
849816.07420	1865583.36623	411
849813.56859	1865590.93079	172
849817.12503	1865599.08756	172
849826.26238	1865617.68539	173
849817.46632	1865643.55279	175
849810.73250	1865653.62464	176
849811.46562	1865695.14176	108
849801.25856	1865780.86612	410
849810.85135	1865846.23666	409
849780.45763	1865906.16581	180
849737.93964	1865905.74732	181
849699.19996	1865879.24506	182
849694.17460	1865838.75955	183
849689.79904	1865727.49867	312
849685.47681	1865617.58282	184
849734.94933	1865506.74625	386
649754.94955	1805500.74025	300
AREA "F"		
NORTH	EAST	Point #
849815.92160	1865940.90924	110
849824.39775	1865999.70351	109
849710.30838	1866007.56636	187
849704.65272	1865941.40823	388
849815.92160	1865940.90924	110
040010.02100	1000040.00024	110
AREA "G"		
NORTH	EAST	Point #
849811.20595	1866037.84131	189
849795.76690	1866075.73608	338
849767.10290	1866116.74370	191
849696.12266	1866262.27953	390
849631.25699	1866395.27823	391
849625.14242	1866407.81537	79 MH
849617.01962	1866417.32501	392
849561.30036	1866482.55746	393
849497.45831	1866557.29954	195
849490.28422	1866410.67696	195
849490.28422 849556.17669		196
	1866325.00704	
849591.11839	1866204.02424	404
849632.65737	1866156.80372	346
849702.64017	1866057.68956	199
849811.20595	1866037.84131	189

AREA "H"

EAST	Point #
1866531.05945	200
1866542.12494	201
1866563.46603	202
1866583.54506	401
1866580.20684	203
1866564.90566	402
1866462.67261	403
1866442.93365	375
1866481.41733	399
1866455.34439	400
1866412.85336	210
1866531.05945	200
	$1866531.05945 \\ 1866542.12494 \\ 1866563.46603 \\ 1866583.54506 \\ 1866580.20684 \\ 1866564.90566 \\ 1866462.67261 \\ 1866442.93365 \\ 1866442.93365 \\ 1866481.41733 \\ 1866455.34439 \\ 1866412.85336 \\ 1866412.8536 \\ 1866412.8536 \\ 1866412.85336 \\ 1866412.8536 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.85336 \\ 1866412.8534 \\ 1866412.85336 \\ 1866412.854 \\ 1866412.8536 \\ 1866412.8536 \\ 1866412.854 \\ 1866412.8$

Visual Stream Morphology Stability Assessment

Reach ID Assessed Length

Table 5

Mainstem 2275 If

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	6	6			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	4	4			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 	4	4			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	4	4			100%			
		2. Thalweg centering at downstream of meander (Glide)	4	4			100%			
	•	-			•			•		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			6	230	95%	6	230	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			2	20	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
	-			Totals	8	250	95%	6	230	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	6			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	4	6			67%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	0	0			100%			

Visual Stream Morphology Stability Assessment

Reach ID Assessed Length

Unnamed Tributary 450 If

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			1	10	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	2	2			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	2	2			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 	2	2			100%			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	2	2			100%			
		2. Thalweg centering at downstream of meander (Glide)	2	2			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	100	98%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
		_		Totals	2	100	98%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	2	2			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	1	1			100%			

Table 5 Reach ID Vegetation Condition Assessment

Tianted Acreage	7.00 ac					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Orange Point	1	0.01	0.1%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.01 acres	Red veg plot polygons	5	0.05	0.7%
			Total	6	0.06	0.8%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	N/A	0	0.00	0.0%
Cumulative Tot					0.06	0.8%

Easement Acreage ²	7.06 ac					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	1000 SF	Yellow Point	9 points	0.75	10.6%
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	Pink Point	3 points	0.01	0.1%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

Table 6 Planted Acreage

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted are takened in the relevant item (i.e., item 1,2 of o) as well as a parallel taky in ten 0.
4 = Invasives of occur or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spices are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timetrames that are slightly longer (e.g., r-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timetrames discussed and therefore are not expected to be mapped, with be mapped, if in the indegement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, distribution relative to native binates. Anothere practicality of treatment. For example, even modes of Kudzu or Japanese Knottweet early in the potential, impacts of treating extensive amounts of ground cover. Those species with the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. These species with the watch list designator in gray shade are pound, particularly interest gree there example, even modes are to be observed across the state with any frequency. Those in red railogs are of particular interest gree there ere there is on the integration of an area is somewhere, between pisolate as pecifies are optical therees gree there ere proved grees of the corestee of mapping as points where isolated specifies are optical as well, but of the observed across the state with any frequency. Those in red railogs are of particular interest gree theree isolat

Photo Station 1, rail line at bollard 172, facing east; April 3, 2013

Photo Station 1, rail line at bollard 172, facing east; September 30, 2014

Photo Station 2, level spreader at bollard 410, facing east; October 15, 2013

Photo Station 1, rail line at bollard 172, facing east; October 15, 2013

Photo Station 2, level spreader at bollard 410, facing east; April 3, 2013

Photo Station 2, level spreader at bollard 410, facing east; September 30, 2014

Appendix B

Photo Log 1: Established Photo Stations

Photo Station 3, rail line discharge, facing south; April 3, 2013

Photo Station 3, rail line discharge, facing south; September 30, 2014

Photo Station 4, discharge at bollard 312, facing west; October 15, 2013

Photo Station 3, rail line discharge, facing south; October 15, 2013

Photo Station 4, discharge at bollard 312, facing west; April 3, 2013

Photo Station 4, discharge at bollard 312, facing west; September 30, 2014

Appendix B

Photo Station 5, view of easement facing northwest; April 3, 2013

Photo Station 5, view of easement facing northwest; September 30, 2014

Photo Station 6, VP 7 at bollard 401; October 15, 2013

Photo Station 5, view of easement facing northwest; October 15, 2013

Photo Station 6, VP 7 at bollard 401; April 3, 2013

Photo Station 6, VP 7 at bollard 401; September 30, 2014

Photo Station 7, XS 1, facing right bank; April 3, 2013

Photo Station 7, XS 1, facing right bank; September 30, 2014

Photo Station 8, XS 2, facing right bank; October 15, 2013

Photo Station 7, XS 1, facing right bank; October 15, 2013

Photo Station 8, XS 2, facing right bank; April 3, 2013

Photo Station 8, XS 2, facing right bank; September 30, 2014

Appendix B

Photo Station 9, XS 3, facing right bank; April 3, 2013

Photo Station 9, XS 3, facing right bank; September 30, 2014

Photo Station 10, XS 4, facing right bank; October 15, 2013

Photo Station 9, XS 3, facing right bank; October 15, 2013

Photo Station 10, XS 4, facing right bank; April 3, 2013

Photo Station 10, XS 4, facing right bank; September 30, 2014

Appendix B

Photo Station 11, XS 5, facing right bank; April 3, 2013

Photo Station 11, XS 5, facing right bank; September 30, 2014

Photo Station 12, XS 6, facing right bank; October 15, 2013

Photo Station 11, XS 5, facing right bank; October 15, 2013

Photo Station 12, XS 6, facing right bank; April 3, 2013

Photo Station 12, XS 6, facing right bank; September 30, 2014

Photo Station 13, XS 7, facing right bank; April 3, 2013

Photo Station 13, XS 7, facing right bank; September 30, 2014

Photo Station 14, XS 8, facing right bank; October 15, 2013

Photo Station 13, XS 7, facing right bank; October 15, 2013

Photo Station 14, XS 8, facing right bank; April 3, 2013

Photo Station 14, XS 8, facing right bank; September 30, 2014

Final Appendix B

Photo Station 15, XS 9, facing right bank; April 3, 2013

Photo Station 15, XS 9, facing right bank; September 30, 2014

Photo Station 16, XS 10, facing right bank; October 15, 2013

Photo Station 15, XS 9, facing right bank; October 15, 2013

Photo Station 16, XS 10, facing right bank; April 3, 2013

Photo Station 16, XS 10, facing right bank; September 30, 2014

Appendix B

Photo Station 17, XS 11, facing right bank; April 3, 2013

Photo Station 17, XS 11, facing right bank; September 30, 2014

Photo Station 18, XS 12, facing right bank; October 15, 2013

Photo Station 17, XS 11, facing right bank; October 15, 2013

Photo Station 18, XS 12, facing right bank; April 3, 2013

Photo Station 18, XS 12, facing right bank; September 30, 2014

Photo Station 19, XS 13, facing right bank; April 3, 2013

Photo Station 19, XS 13, facing right bank; September 30, 2014

Photo Station 20, XS 14, facing right bank; October 15, 2013

Photo Station 19, XS 13, facing right bank; October 15, 2013

Photo Station 20, XS 14, facing right bank; April 3, 2013

Photo Station 20, XS 14, facing right bank; September 30, 2014

Veg Plot 1, view from southwest corner; March 27, 2013

Veg Plot 1, view from southwest corner; September 29, 2014

Veg Plot 2, view from southwest corner; October 15, 2013

Veg Plot 1, view from southwest corner; October 15, 2013

Veg Plot 2, view from southwest corner; March 27, 2013

Veg Plot 2, view from southwest corner; September 29, 2014

Final Appendix B

Photo Log 2: Vegetation Monitoring Plot Photos

Veg Plot 3, view from southwest corner; March 27, 2013

Veg Plot 3, view from southwest corner (relocated); September 29, 2014

Veg Plot 4, view from southwest corner; October 15, 2013

Veg Plot 3, view from southwest corner; October 15, 2013

Veg Plot 4, view from southwest corner; March 27, 2013

Veg Plot 4, view from southwest corner (relocated); September 29, 2014

Appendix B

Veg Plot 5, view from southwest corner; March 27, 2013

Veg Plot 5, view from southwest corner; September 29, 2014

Veg Plot 6, view from southwest corner; October 15, 2013

Veg Plot 5, view from southwest corner; October 15, 2013

Veg Plot 6, view from southwest corner; April 3, 2013

Veg Plot 6, view from southwest corner; September 29, 2014

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 3 of 5; Submitted: December 2014

Final Appendix B

Veg Plot 7, view from southwest corner; April 3, 2013

Veg Plot 7, view from southwest corner; September 29, 2014

Veg Plot 8, view from southwest corner; October 15, 2013

Veg Plot 7, view from southwest corner; October 15, 2013

Veg Plot 8, view from southwest corner; April 3, 2013

Veg Plot 8, view from southwest corner; September 29, 2014

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 3 of 5; Submitted: December 2014

Final Appendix B Appendix C:

Vegetation Plot Data

Table 7: Vegetation Plot Success by Project Asset Type Table 8: CVS Stem Count Total and Planted with/without Livestakes by Plot and Species

Table 7:Little Alamance (#92372)

Year 3 (29-Sep-2014)

Vegetation Plot Summary Information

Plot #	Riparian Buffer Stems ¹	Stream/ Wetland Stems ²	Live Stakes	Invasives	Volunteers ³	Total ⁴	Unknown Growth Form
1	n/a	8	0	0	25	33	12
2	n/a	5	0	6	23	22	2
3	n/a	7	0	2	16	21	0
4	n/a	9	0	0	27	36	7
5	n/a	3	0	0	13	16	0
6	n/a	11	0	1	4	14	0
7	n/a	2	0	0	0	2	0
8	n/a	3	0	0	0	3	0

Wetland/Stream Vegetation Totals

		•	U,	
		(per a	cre)	
	Stream/			Success
	Wetland			Criteria
Plot #	Stems ²	Volunteers ³	Total ⁴	Met?
1	324	1012	1335	Yes, barely
2	202	931	890	No
3	283	647	850	No
4	364	1093	1457	Yes
5	121	526	647	No
6	445	162	567	Yes
7	81	0	81	No
8	121	0	121	No
Project Avg	243	546	744	No

Riparian Buffer Vegetation Totals

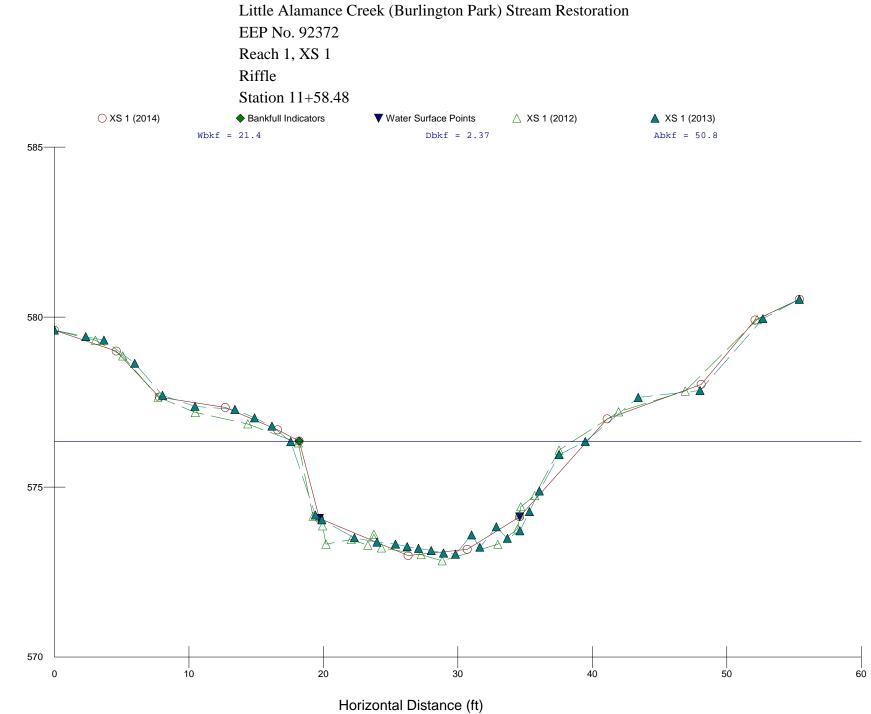
(per acre)

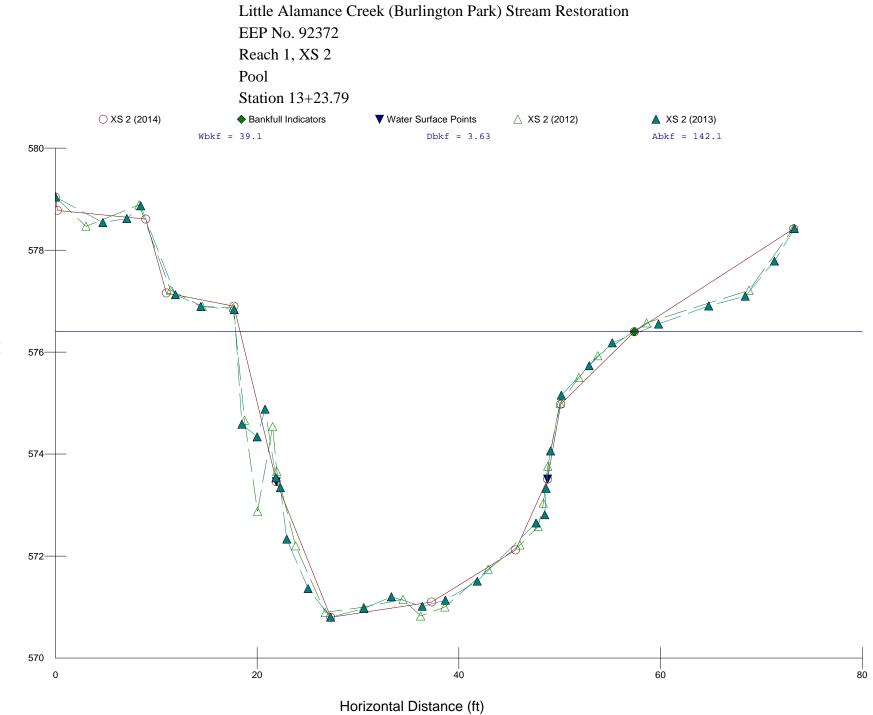
		,
	Riparian Buffer	Success Criteria
Plot #	Stems ¹	Met?
1	n/a	
2	n/a	
3	n/a	
4	n/a	
5	n/a	
6	n/a	
7	n/a	
8	n/a	
Project Avg	n/a	

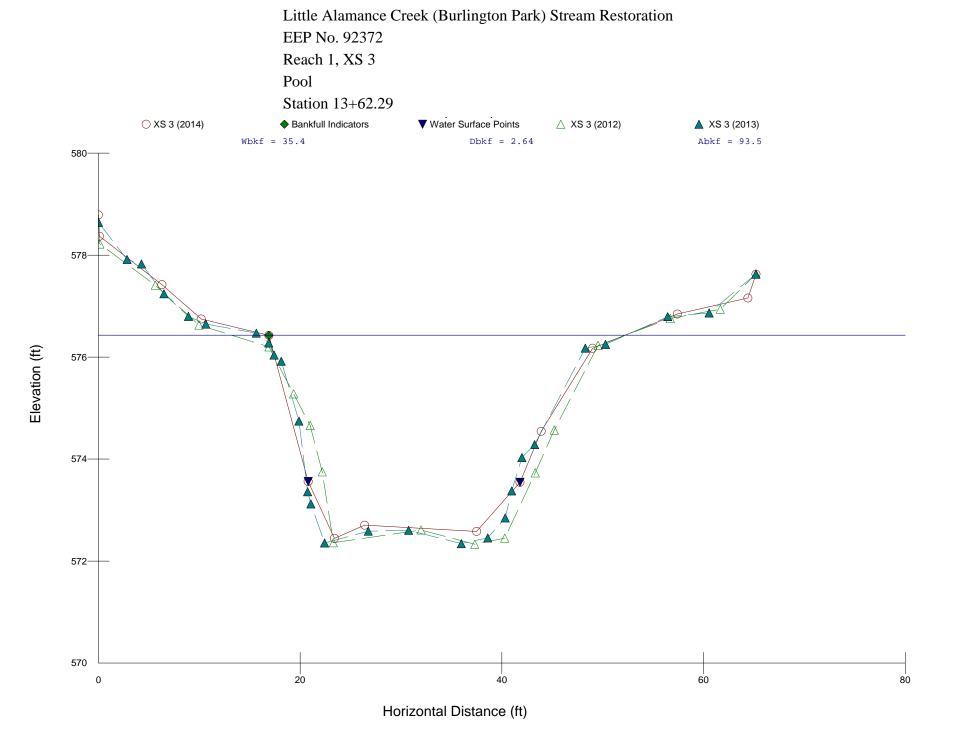
Stem Class characteristics

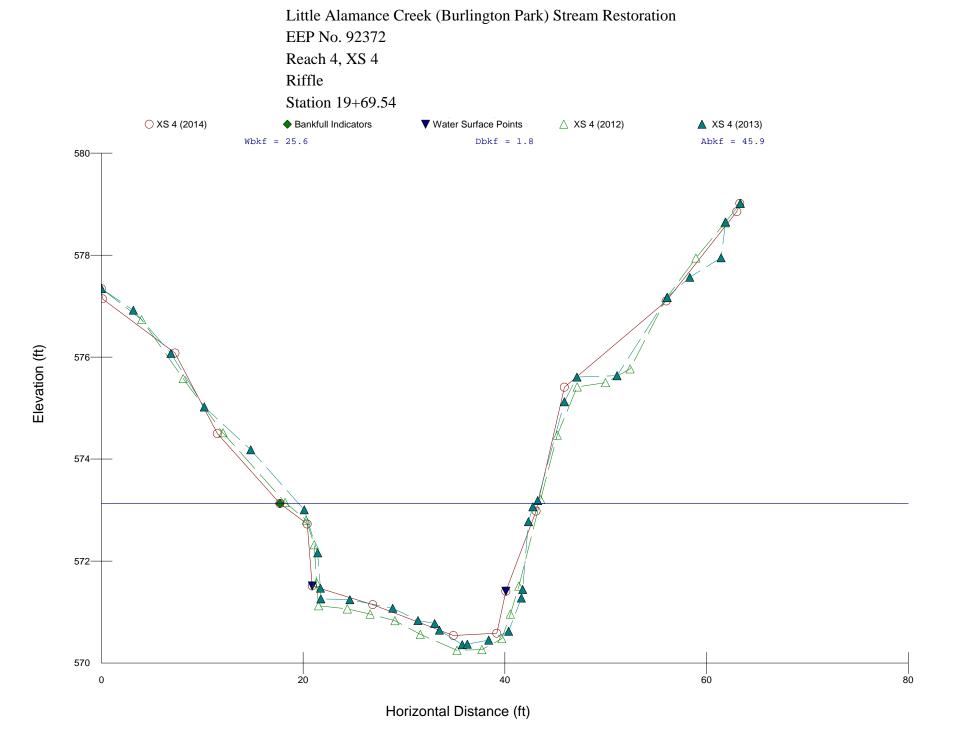
¹ Buffer	
Stems	Native planted hardwood trees. Does NOT include shrubs. No pines. No vines.
² Stream/	
Wetland	
Stems	Native planted woody stems. Includes shrubs, does NOT include live stakes. No vines

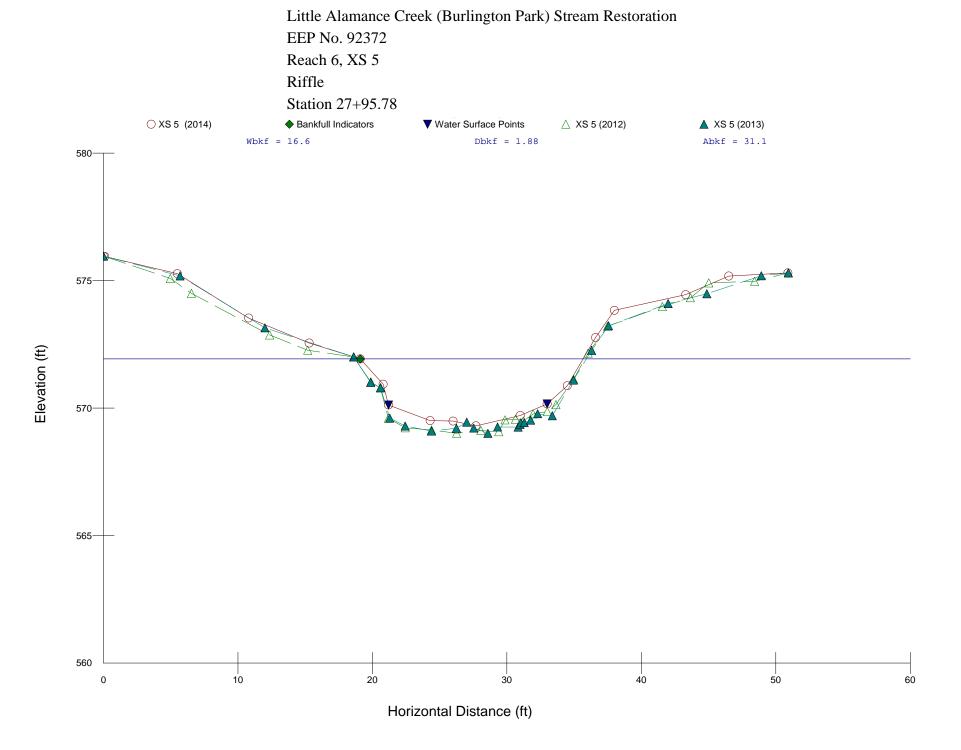
³Volunteers Native woody stems. Not planted. No vines.

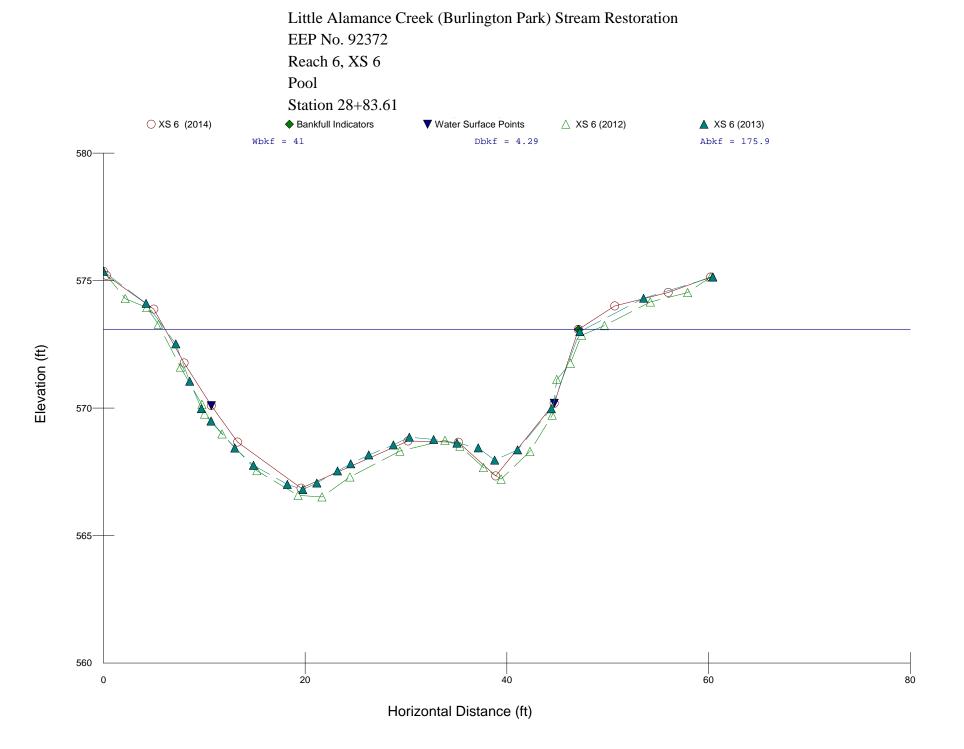

⁴Total Planted + volunteer native woody stems. Includes live stakes. Excl. exotics. Excl. vines.

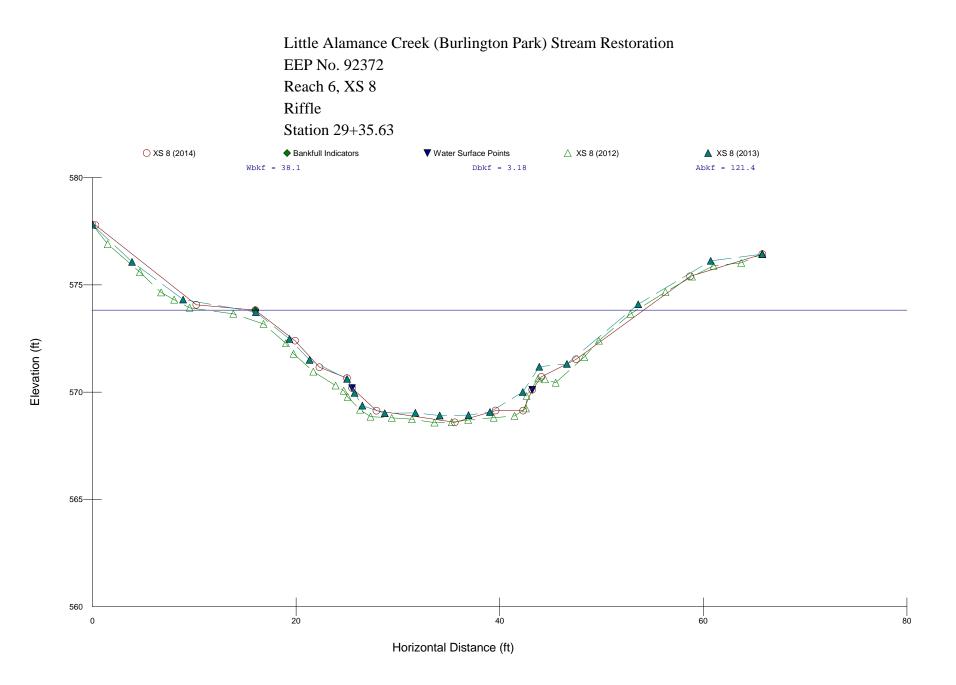

												Cu	rrent P	Plot Da	ita (MY	3 2014)													An	nnual Me	eans			_
		92	372-01-0	0001	923	72-01-0	0002	923	872-01-	0003	92372	-01-00	04	923	72-01-0	005	923	72-01-0	0006	92372-01	-0007	923	72-01-0	008	M	1Y3 (20	14)	N	MY2 (201	13)	N	1Y1 (201	13)	
Scientific Name	Common Name	Species Type	PnoLS	5 P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS P-	all T		PnoLS	P-all	т	PnoLS	P-all	т	PnoLS P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	5 P-all	т	PnoLS	P-all	т
Acer negundo	boxelder	Tree																																Г
Acer rubrum	red maple	Tree												1														1						Г
Albizia julibrissin	silktree	Exotic																		1								1						T
Asimina triloba	pawpaw	Tree																2	2	2						2	2	2 2	5	5	5			T
Baccharis halimifolia	eastern baccharis	Shrub									1																	1		-				T
Betula nigra	river birch	Tree				2	2	2			-										1 1	1	1	1	1	4	4	1 4	8	9	10	7	7	t
Carpinus caroliniana	American hornbeam	Tree				_	_	_										4	Δ	4				-		4	4	1 4	3	3	3	8	8	t
Carya	hickory	Tree															2	-		-						-		2			2	Ľ	Ŭ	t
Carya alba	mockernut hickory	Tree															-											-		+	1			+
Carya cordiformis	bitternut hickory	Tree											-	-	1	1	1									1	1	1	-	+	1	2	2	t
	pignut hickory	Tree											_	-	1	1	- 1									1	- 1	. 1	-	+	1		2	+
Carya glabra				-							-	-										-						-		+	1	<u> </u>		+
Carya illinoinensis	pecan	Tree									_											_						_	<u> </u>	<u> </u>	2	<u> </u>	-	+
Carya ovata	shagbark hickory	Tree									-							-											1	1	1	2	2	+
Castanea mollissima	Chinese chestnut	Exotic		1	I					I								I		I	I	1	I			I	I	1		+	1	<u> </u>	<u> </u>	+
Celtis laevigata	sugarberry	Tree	I		<u> </u>					<u> </u>										<u> </u>			I			I	I	-	1	1	1	13	13	+
Celtis occidentalis	common hackberry	Tree	I	1				1				1	1	1												1	1	1 2		<u>+</u>		<u> </u>	<u> </u>	4
Cercis canadensis	eastern redbud	Tree												1														1						
Cornus amomum	silky dogwood	Shrub	1	1	1	1	1	1				1	1	1								1	2	2	2	5	5	, J	5	5	5	6	6	1
Cornus florida	flowering dogwood	Tree	2	2 2	2	1	1	1	2	2	2															5	5	5 5	3	3	4	3	3	1
Diospyros virginiana	common persimmon	Tree			6			9	1	1	3	3	3	7			3			1						4	4	29			13			Г
DONTKNOW: unsure record	i																															1	1	Г
Euonymus americanus																													1			1		Т
raxinus americana	white ash	Tree																											1					T
raxinus pennsylvanica	green ash	Tree												11														11		-		2	2	Т
lamamelis virginiana	American witchhazel	Tree																											1	-	1			T
lex opaca	American holly	Tree	2	2	2																					2	2	> 2	2	2	2	2	2	t
luglans nigra	black walnut	Tree	_	-	_												2									_	-	2	_	+	_	<u> </u>	_	+
Ligustrum	privet	Exotic																										_	-	+		-		t
Ligustrum japonicum	Japanese privet	Exotic						6			1		-	-														7	-	+				+
Ligustrum Japonicum	glossy privet	Exotic	-	-				0			1			-														,	-	+				+
		Exotic											_	-															-	+				+
Ligustrum sinense Liguidambar styraciflua	Chinese privet sweetgum	Tree		-							-		_	-																+		<u> </u>		+
				-	1						-											-						1	·	+	2	<u> </u>		┿
Liriodendron tulipifera	tuliptree	Tree		-	1							1	1	1												1		L 2		+		<u> </u>		+
Morus alba	white mulberry	Exotic		_							1																	1		<u> </u>	1	<u> </u>		+
Morus rubra	red mulberry	Tree		_							_											_								+	_			+
Photinia	chokeberry				12			2						7														21				<u> </u>		+
Platanus occidentalis	American sycamore	Tree							2	2	2	1	1	1	2	2	2									5	5	5 5	4	. 4	5	3	3	
Prunus serotina	black cherry	Tree																													1	<u> </u>		
Quercus	oak	Tree																													1	<u> </u>		
Quercus alba	white oak	Tree															1					1	l				1	1				L		
Quercus coccinea	scarlet oak	Tree															1					1					1	1						T
Quercus falcata	southern red oak	Tree			3						10			1			3			1								18						Т
Quercus nigra	water oak	Tree													_												1		1		7			Г
Quercus pagoda	cherrybark oak	Tree	1	1 1	1				1	1	1															2	2	2 2	1	. 1	1	9	9	T
Quercus palustris	pin oak	Tree																											T	1	49			T
Quercus phellos	willow oak	Tree	1	1				1			1			1			1			1		1	1			1	1	5		1		<u> </u>		Ť
Quercus velutina	black oak	Tree	1	1	1					1							-						1			1	1		1	1		<u> </u>		t
alix nigra	black willow	Tree	1	1						1	1										1	1	1			1	1	1	1	+			1	t
ambucus canadensis	Common Elderberry	Shrub	1	1	3				1	1	1	2	2	2				1	1	1	1 1	1	1			6	f		4	A	4	5	5	t
Jimus americana	American elm	Tree		1 1					-	-		-	~	1	_			-	-	1		1 1	1			, v	1	1	1					t
Jimus rubra	slippery elm	Tree		1				Α						1								1	1			1	-	4	-	+	7			$^{+}$
innus rubra iburnum dentatum	southern arrowwood		•	1			1	4						-				1			I	+				3	-	2 2	-	+	2	3	2	t
			1	1 1	1	1	1	1				<u> </u>						1	1	1	+ +	-				3	1 3	3	2	2	2	3	3	+
/iburnum nudum	possumhaw	Shrub		1														3		-		+				3	3	-	1		1	<u> </u>	-	+
iburnum prunifolium	blackhaw	shrub	_	-	-					-								2	3	3		+				5	-	, ,	5	, ,	3	3	3	
		Stem count	8		33	5		28	7	7	23		9	36	3	3	16	11		15		2 2	3	3	3	48		156	43		134	69		T
		size (ares)		1			1			1			1			1			1		1		I	1		I	8		I	8		L	8	
		size (ACRES)		0.02			0.02			0.02			.02			0.02			0.02		0.02		l	0.02			0.20			0.20		L	0.20	
		Species count	6			4			5	5			6	13	2	2	9	5	5	9	2 2		2	2	2	15						15		
		Stems per ACRE	324	324	1335	202	202	1133	283	283	931	364	364	1457	121	121	647	445	445	607	80.9 80.9	80.9	121	121	121	243	243	3 789	218	223	678	349	354	ď

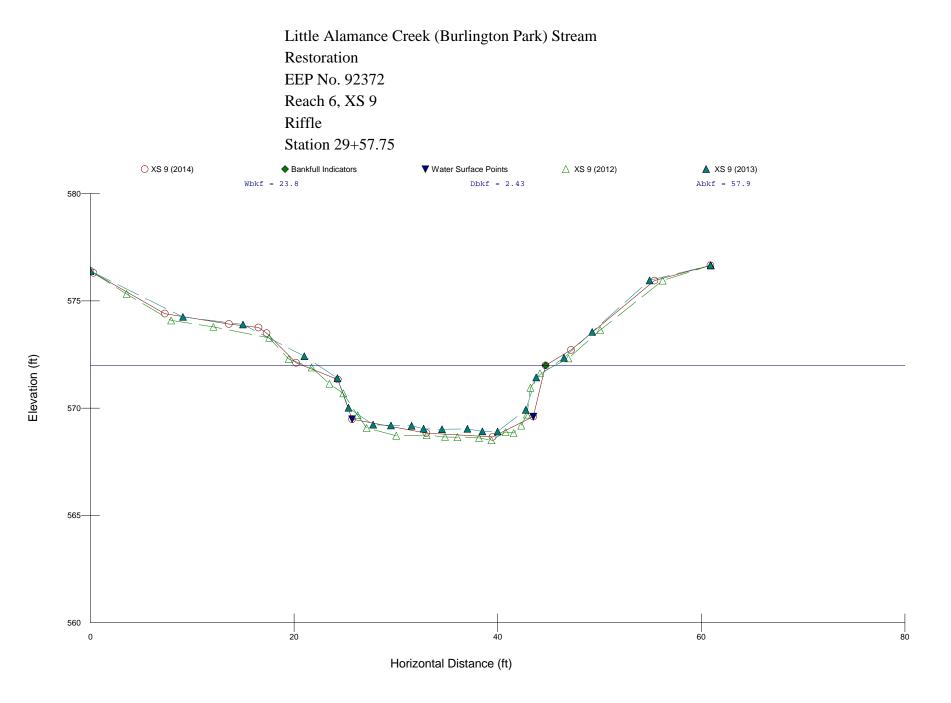

Appendix D: Stream Survey Data

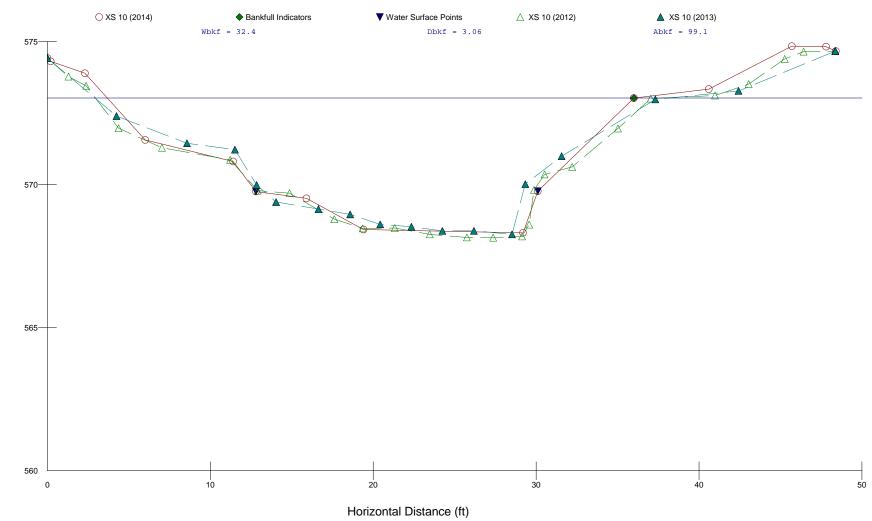

Figure 6: Cross Sections with Annual Overlays
Figure 7: Longitudinal Profiles with Annual Overlays
Figure 8: Pebble Counts with Annual Overlays
Table 9: Stream Bank Erosion Pin Data Table
Table 10a: Baseline Stream Data Summary
Table 10b: Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)
Table 11a: Monitoring – Cross Section Morphology Data Table
Table 11b: Monitoring – Stream Reach Morphology Data Table Figure 6: Cross Sections with Annual Overlays

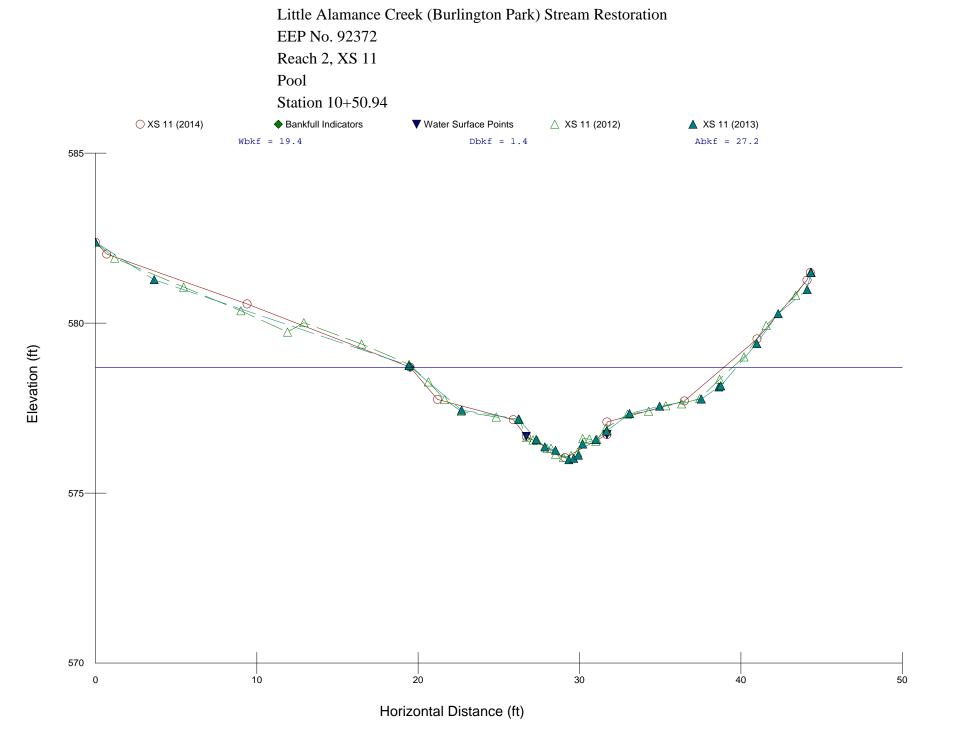

Appendix D

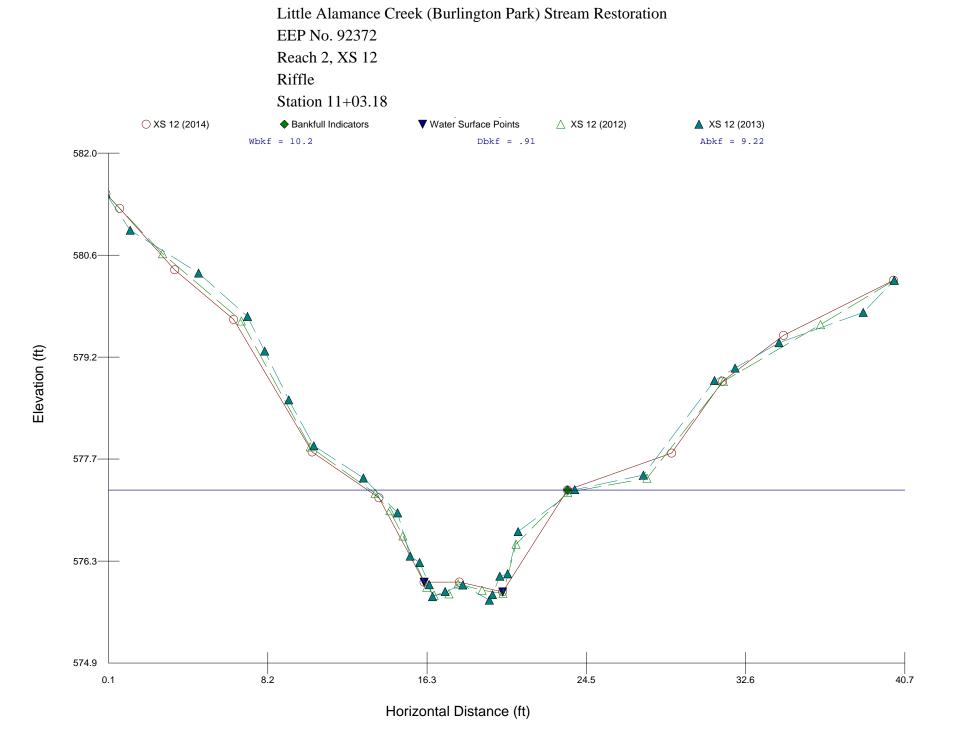


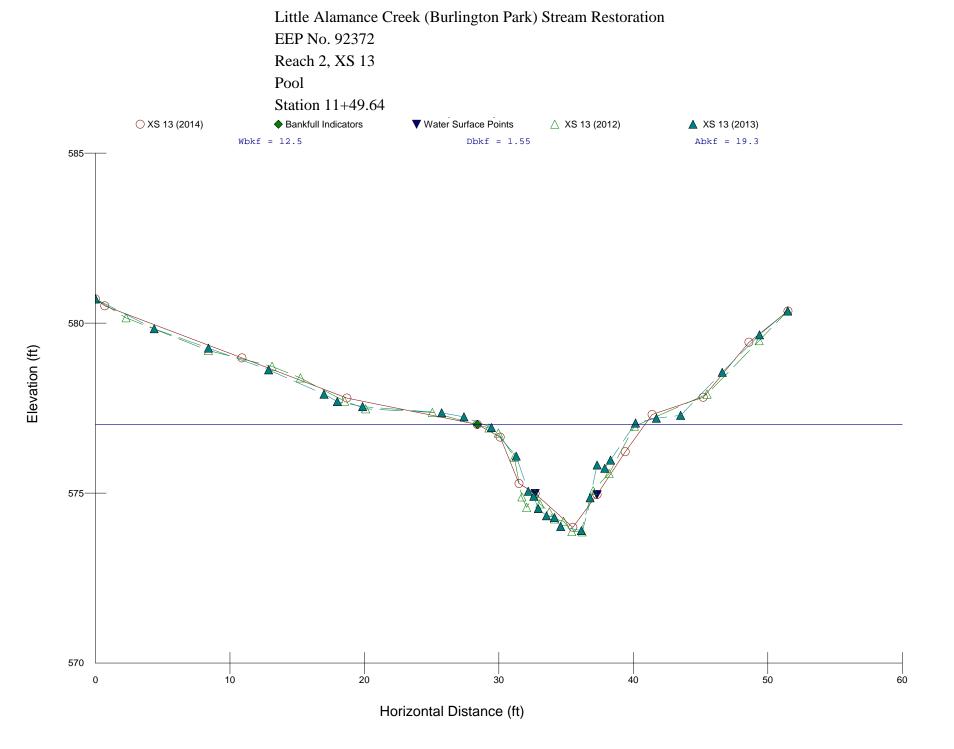


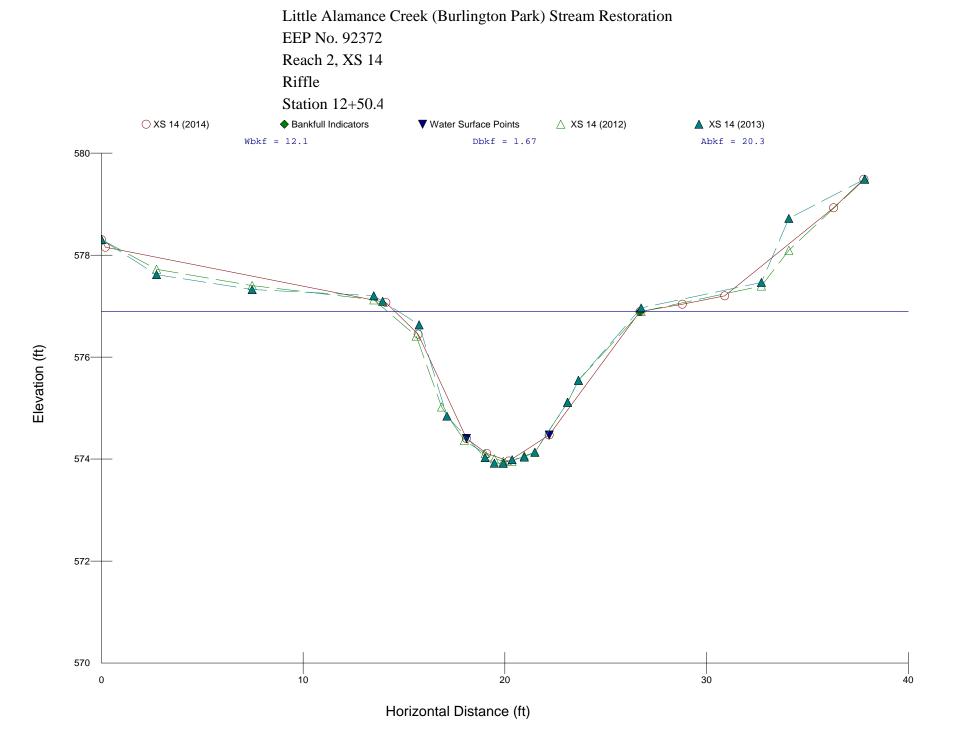





Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 7 Pool Station 29+17.31 O XS 7 (2014) Bankfull Indicators Water Surface Points 🛆 XS 7 (2012) 🔺 XS 7 (2013) Wbkf = 31.8Dbkf = 3.61Abkf = 114.6 580-A 575-A 570-565— 560 20 10 30 40 50 0 60 Horizontal Distance (ft)






Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 10 Riffle Station 30+56.75

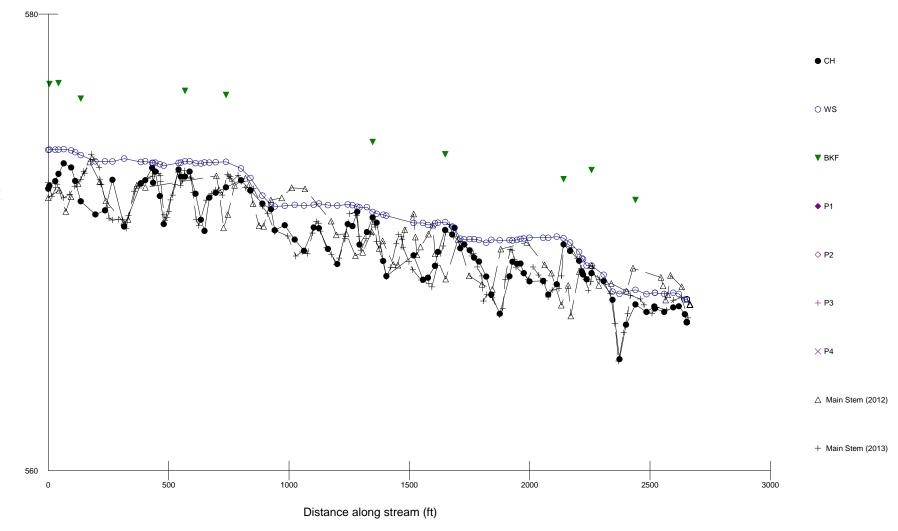
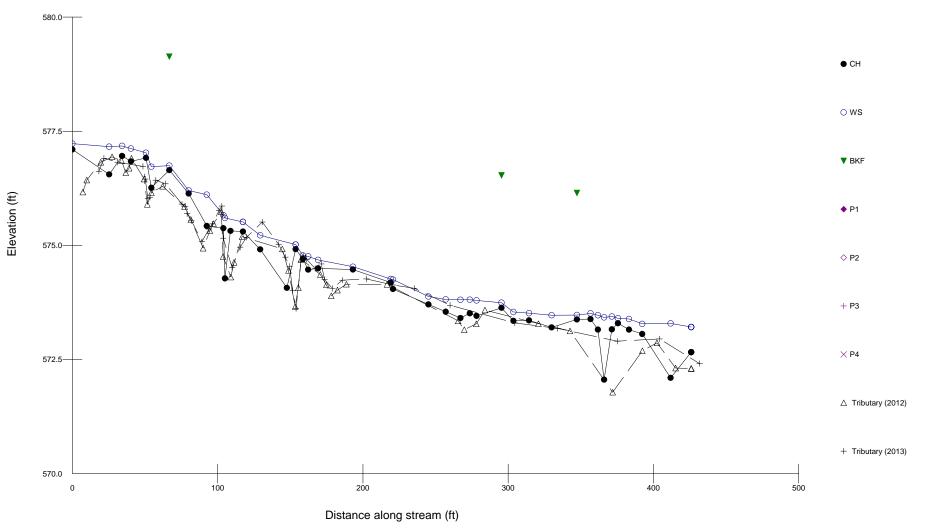
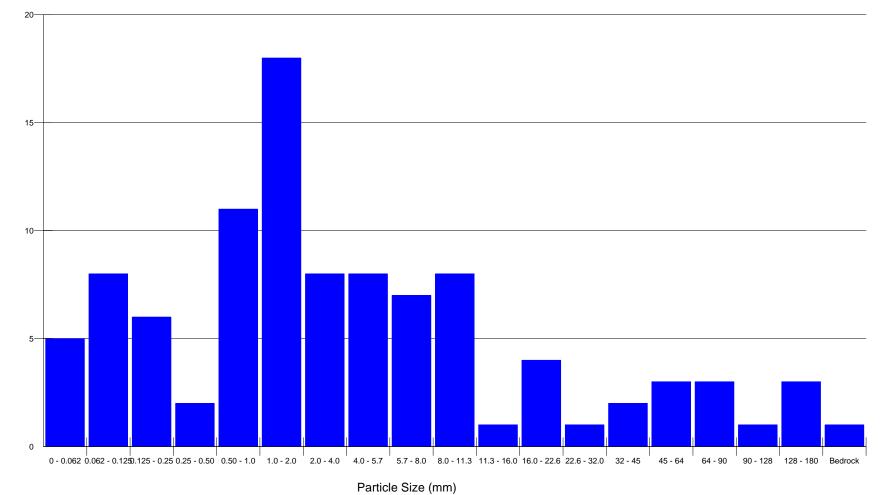


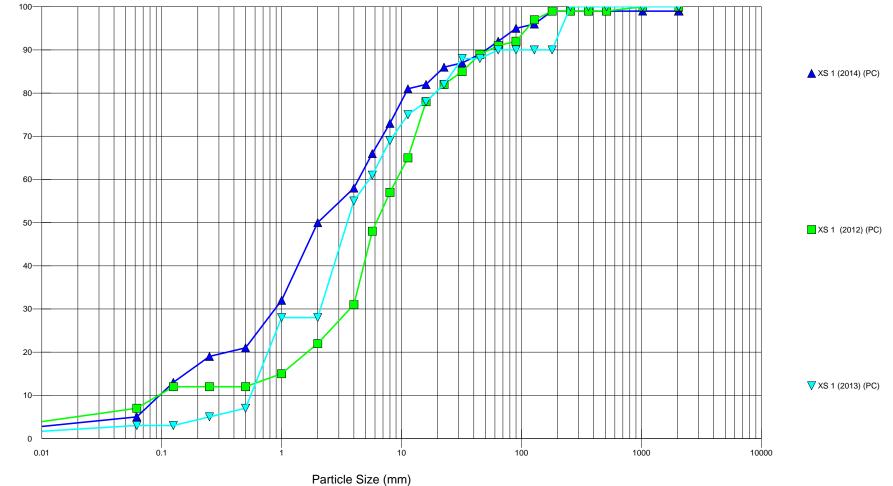
Figure 7: Longitudinal Profiles with Annual Overlays

Appendix D

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Main Stem Station 0+0.00 to 29+68.44

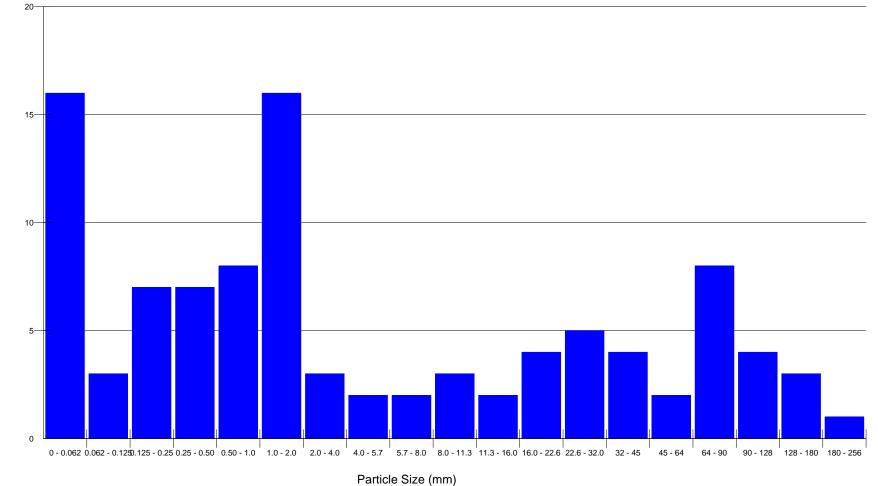
Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Tributary Station 10+0.00 to 14+40.85


Figure 8: Pebble Counts with Annual Overlays

Appendix D

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 1, XS 1 Riffle Station 11+58.48 D50: 2.00 mm D84: 19.30 mm D95: 90.00 mm

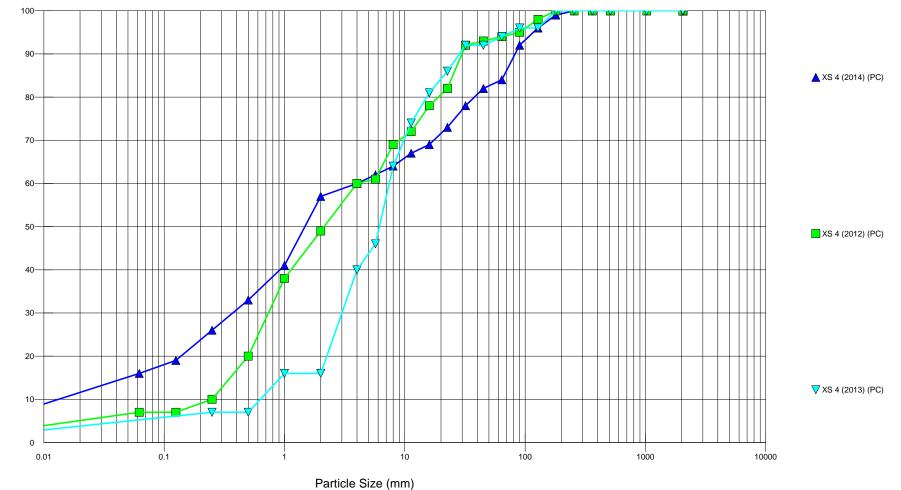

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 1, XS 1 Riffle Station 11+58.48 D50: 2.00 mm D84: 19.30 mm D95: 90.00 mm

Percent Finer

Đ

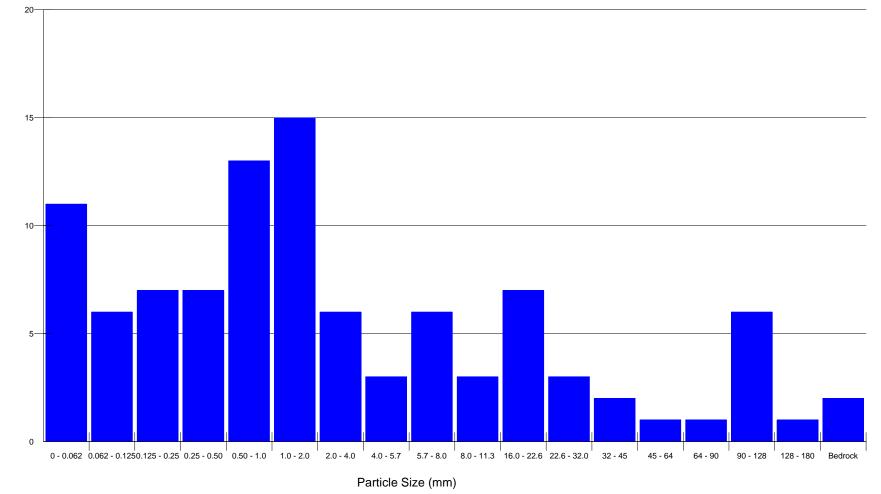
Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 4, XS 4 Riffle Station 19+69.54 D50: 1.56 mm D84: 64.00 mm D95: 118.50 mm

Little Alamance Creek (Burlington Park) Stream Restoration


EEP No. 92372

Reach 4, XS 4 Riffle Station 19+69.54

D50: 1.56 mm

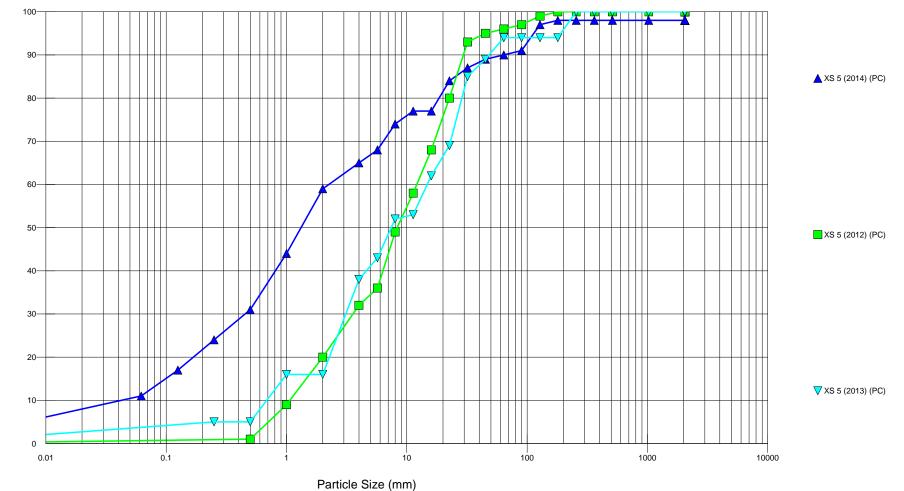

D84: 64.00 mm

D95: 118.50 mm

Percent Finer

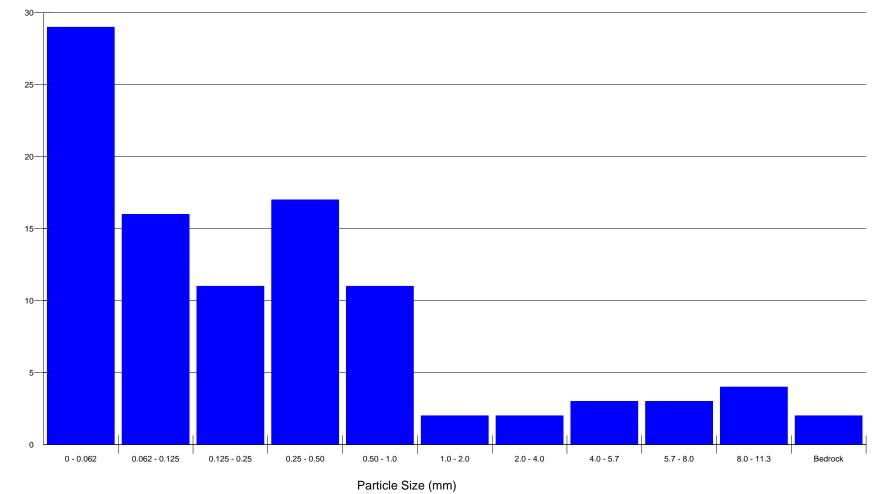
Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 5 Riffle Station 27+95.78 D50: 1.4 mm D84: 22.6 mm D95: 115.33 mm

Little Alamance Creek (Burlington Park) Stream Restoration

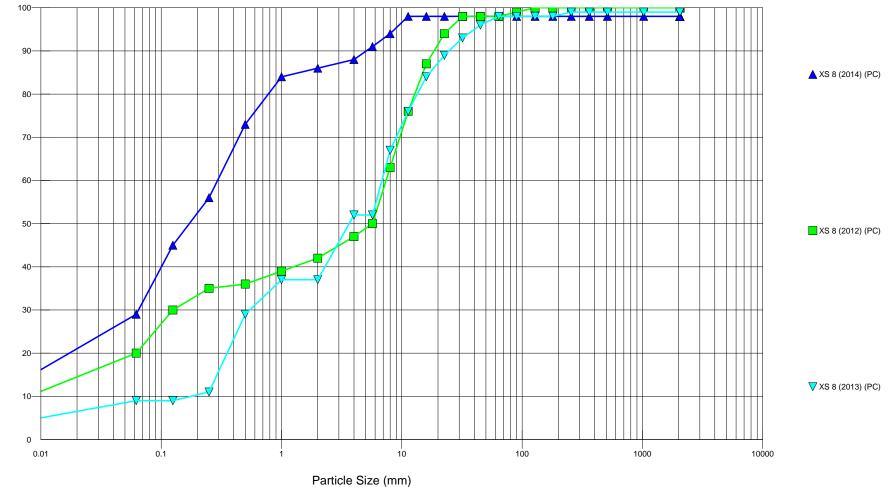

EEP No. 92372

Reach 6, XS 5 Riffle Station 27+95.78

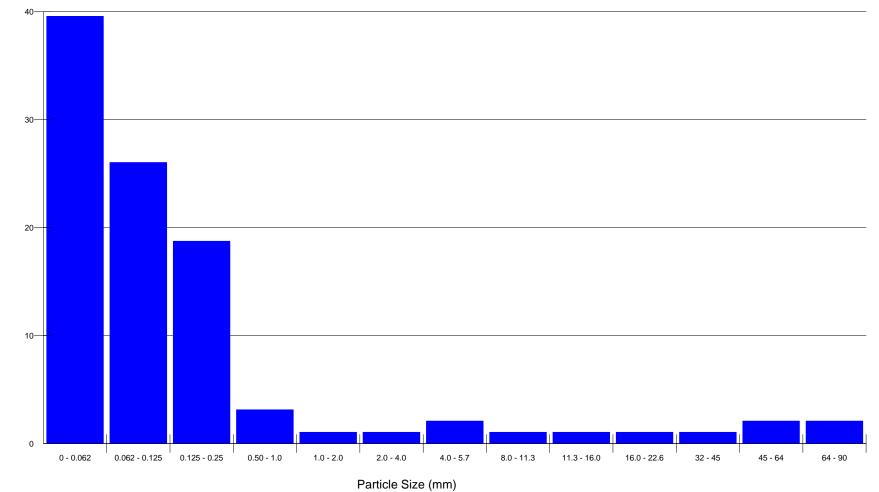
D50: 1.4 mm


D84: 22.6 mm

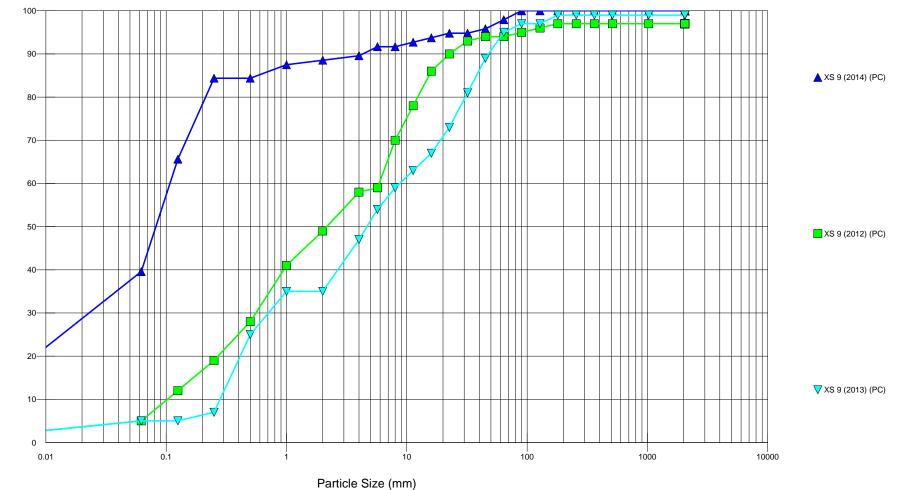
D95: 115.33 mm


Percent Finer

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 8 Riffle Station 29+35.63 D50: 0.18 mm D84: 1.00 mm D95: 8.83 mm

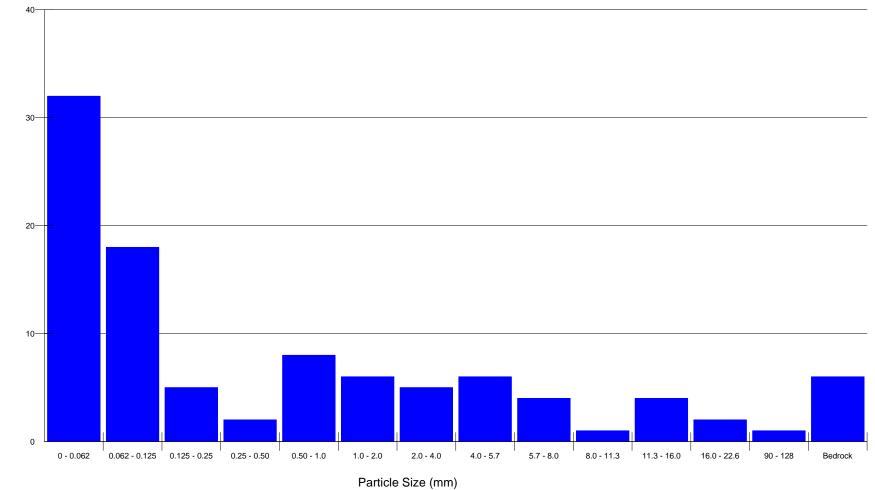

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 8 Riffle Station 29+35.63 D50: 0.18 mm D84: 1.00 mm

D95: 8.83 mm

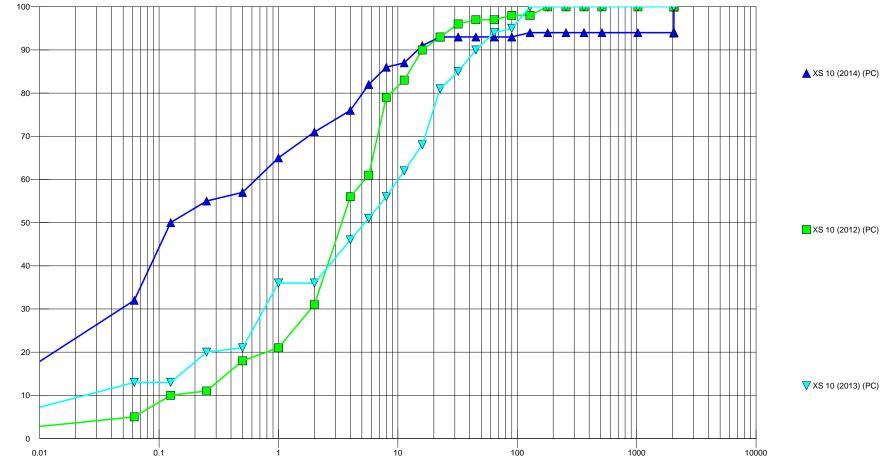


Percent Finer

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 9 Riffle Station 29+57.75 D50: 0.09 mm D84: 0.25 mm D95: 34.62 mm

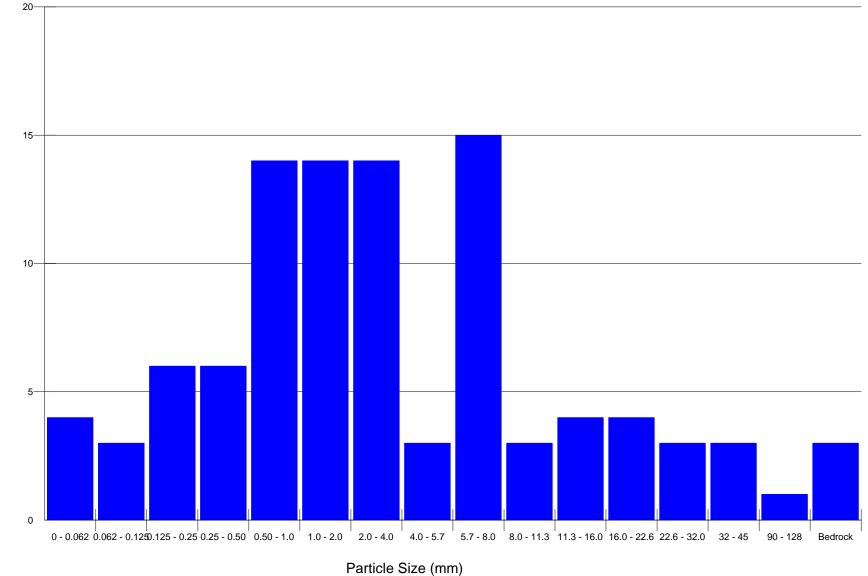

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 9 Riffle Station 29+57.75 D50: 0.09 mm D84: 0.25 mm D95: 34.62 mm

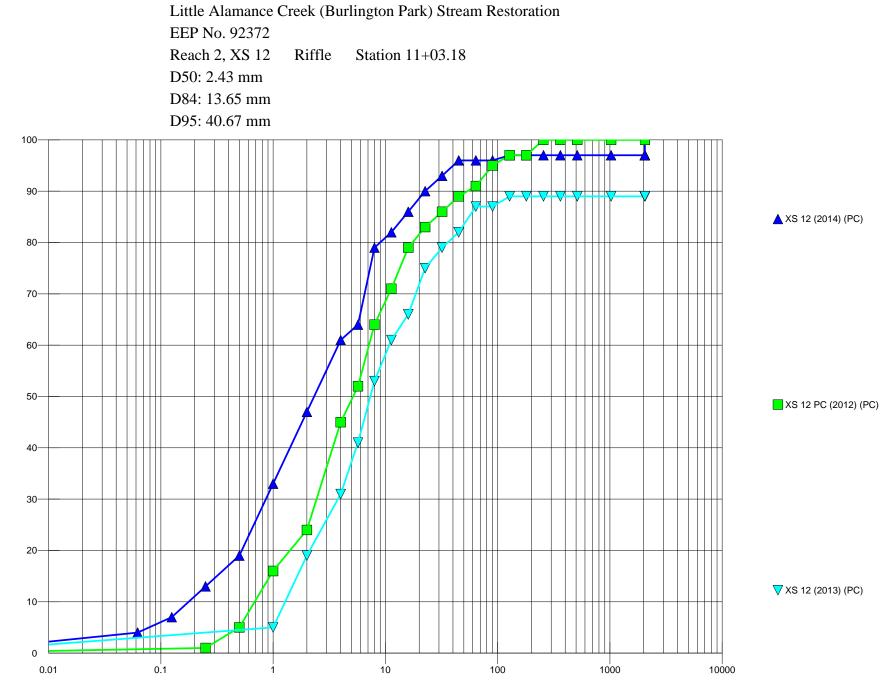
Percent Finer


Perc

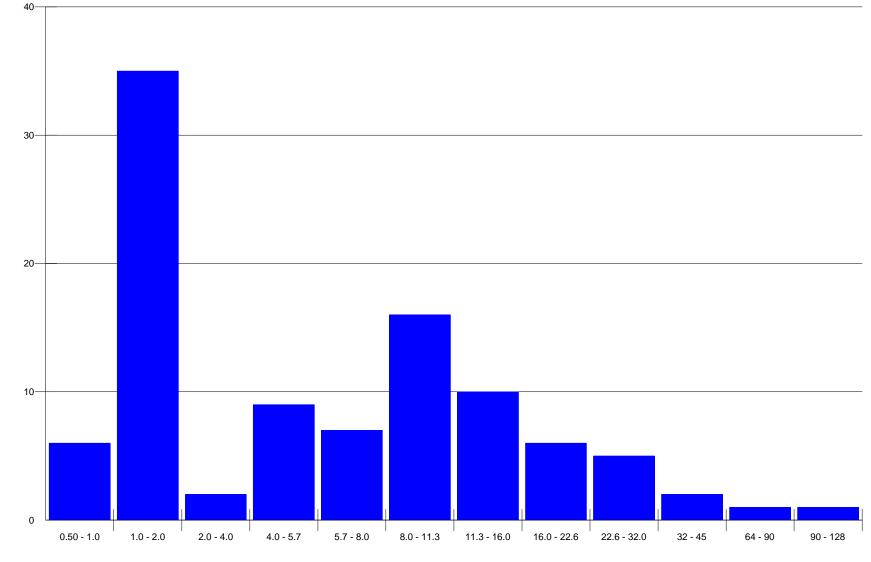
Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 10 Riffle Station 30+56.75 D50: 0.13 mm D84: 6.85 mm D95: Bedrock mm

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 6, XS 10 Riffle Station 30+56.75 D50: 0.13 mm D84: 6.85 mm

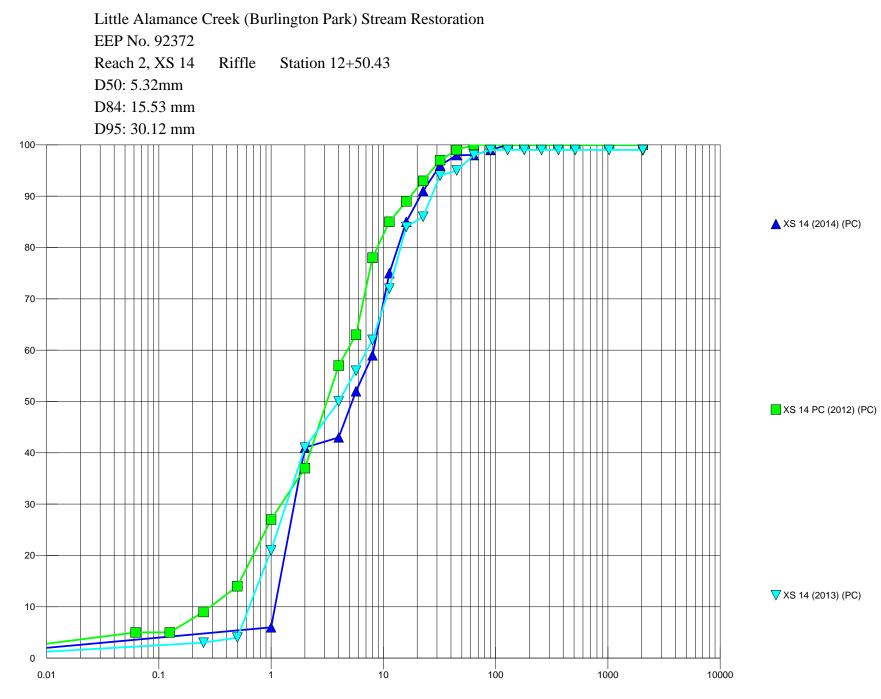

D95: Bedrock mm


Particle Size (mm)

Percent Finer


Percent Retained

Particle Size (mm)


Percent Finer

Little Alamance Creek (Burlington Park) Stream Restoration EEP No. 92372 Reach 2, XS 14 Riffle Station 12+50.43 D50: 5.32mm D84: 15.53 mm D95: 30.12 mm

Particle Size (mm)

Percent Retained

Particle Size (mm)

Percent Finer

Table 9: Stream Bank Erosion Pin Data Table

Per discussions with NCEEP, bank pins are not required and therefore were not installed by EEE Consulting.

Appendix D

	Table 10a. Little Alamance Creek (Burlington Park)														0070) N	Aninet	om (22	75 lf)							
Parameter	Gauge ²	Req	ional C					g Cond			siorai				s) Data	viairist		Design			Мс	onitoring	Baselin	e	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	- -	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)			UL	<u> </u>	31.8	36.2	INICO	42.5	00		IVIIII	15.1	Wied	IVIAX	00			36.2	INICA	19.3	26.3	Mea	36.6	00	
Floodprone Width (ft)					70	94		120				30						>80		47.2	52.7		65.7		
Bankfull Mean Depth (ft)					2.2	2.6		2.9				1.6						2.6		2.09	2.53		3.08		
¹ Bankfull Max Depth (ft)					3.9	4		4.1				2.6						4		2.96	3.61		4.6		
Bankfull Cross Sectional Area (ft ²)					79.3	95		125				24.3						95		40.83	68.78		112.77		
Width/Depth Ratio					11.6	14		17				9.3						13.8		7.85	10.31		12.26		
Entrenchment Ratio					2.1	2.6		3.8				2						>2.2		1.645	2.079		2.488		
¹ Bank Height Ratio					1	1.2		1.4				1						1		0.32	0.66		0.83		
Profile			-	<u>.</u>	•							<u>-</u>	-		-	-					<u></u>	<u>-</u>	<u>.</u>	-	
Riffle Length (ft)																				62	159.33	137.16	353.24	119.9	5
Riffle Slope (ft/ft)					0.003	0.013		0.025									0.003	0.013	0.025		0.003326				
Pool Length (ft)					107.9			505.4										293.7	505.4	37.58		90.19	182.26	44.37	14
Pool Max depth (ft)					5.5	6.1		6.9									5.5	6.1	6.9	3.03		4.525	5.91	0.827	10
Pool Spacing (ft)						473.1		749.5										473.1	749.5				347.97		9
Pattern			<u> </u>																				<u> </u>		-
Channel Beltwidth (ft)					33	70		255									33	70	255	87.3	233		462		
Radius of Curvature (ft)					45	115		220									45	115	220	51.2	118.8		280.7		
Rc:Bankfull width (ft/ft)					1.2	3.2		6.1									1.2	3.2	6.1	2	4.5		10.7		
Meander Wavelength (ft)					227	361		559									227	361	559	436.2	454.6		475.2		
Meander Width Ratio					0.9	1.9		7									0.9	1.9	7	7.7	17.3		24.1		
Transport parameters																									
Reach Shear Stress (competency) lb/f ²							3	30										30				0.2	6		
Max part size (mm) mobilized at bankfull							8	30														55.	7		
Stream Power (transport capacity) W/m ²																									
Additional Reach Parameters																									
Rosgen Classification							C/E	/5/1					C/	Έ4				C 4/1				E	1		
Bankfull Velocity (fps)							2	.5										2.5							
Bankfull Discharge (cfs)							23	7.5																	
Valley length (ft)																									
Channel Thalweg length (ft)																						2968	3.4		
Sinuosity (ft)							1	.2										1.2				1.2	2		
Water Surface Slope (Channel) (ft/ft)							0.0	024										0.0024				0.00	24		
BF slope (ft/ft)																						0.002	258		
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks																									
Channel Stability or Habitat Metric																									
Biological or Other																									
Shaded cells indicate that these will typically not be filled in.																									

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

		Little /	Alamar		ook (Bi	urlinate					eam Da ion/EEI				Innam	od Tri	butary	(450 lf	:)						
Parameter	Gauge ²		jional C		eek (D			g Cond		Slorali				each(es				Design			Мс	nitorin	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (fi	t)				10.9	12		13					15.1				10.9	12	13	9.86	9.89		9.91		
Floodprone Width (fl	t)				27	33.5		40					30				27	33.5	40	8.5	12.5		16.5		
Bankfull Mean Depth (ft	t)				1.1	1.3		1.5					1.6				1.1	1.3	1.5	0.86	1.27		1.67		
¹ Bankfull Max Depth (f	t)				2	2		2.1					2.6				2	2	2.1	1.43	2.17		2.91		
Bankfull Cross Sectional Area (ft ²	²)				14.8	15.8		16.7					24.3				14.8	15.8	16.7	8.5	12.5		16.5		
Width/Depth Ratio	0				7.1	9.3		11.5					9.3				7.1	9.3	11.5	5.9	8.71		11.52		
Entrenchment Ratio	0				2.1	2.9		3.7					2				2.1	2.9	3.7	2.25	3.38		4.52		
¹ Bank Height Rati	0				1	1.2		1.3					1					1		0.99	1.27		2.56		
Profile																									
Riffle Length (ft	t)																			26.98	8 41.87		59.91		
Riffle Slope (ft/ft	t)				0.015	0.025		0.05			Ī						0.015	0.025	0.05	0.006	0.01		0.018		
Pool Length (ft					4	18.2		163			Ī						4	18.2	163	12.96	6 28.2		60.96		
Pool Max depth (ft	t)					2.4												2.4		0.74	2.06		3.26		
Pool Spacing (ft	t)				23.4	34.1		54.8									23.4	34.1	54.8	12.52	30.1		60.61		
Pattern									•																
Channel Beltwidth (ff	t)				13.5	24.6		33.7									13.5	24.6	33.7	5.5	10.39		18.97		
Radius of Curvature (ft	t)				15	29		55									15	29	55	5.22	15.81		31.25		
Rc:Bankfull width (ft/ft	t)				1.2	2.4		4.6									1.2	2.4	4.6	1.547	1.784		2.02		
Meander Wavelength (ff	t)				55.8	83.9		111.9									55.8	83.9	111.9	135.7	172.4		209.2		
Meander Width Rati	0				4.7	7		9.3									4.7	7	9.3	0.556	1.051		1.918		
Transport parameters																									
Reach Shear Stress (competency) lb/f	2						0.	71										0.71							
Max part size (mm) mobilized at bankfu							4	18																	
Stream Power (transport capacity) W/m	2																								
Additional Reach Parameters																									
Rosgen Classificatio	n						E	4/1					C/	E4				C4/1				E	Ξ4		
Bankfull Velocity (fps	5)						4	.4										4.4							
Bankfull Discharge (cfs							68	8.7																	
Valley length (ft																									
Channel Thalweg length (ft																									
Sinuosity (ft							1	.1										1.1							
Water Surface Slope (Channel) (ft/ft	t)						0.0	095										0.0095							
BF slope (ft/ft	t)																								
³ Bankfull Floodplain Area (acres																									
⁴ % of Reach with Eroding Bank	S																								
Channel Stability or Habitat Metri	с																								
Biological or Othe	er																								

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Little Alamance Creek (Burlington Park) Stream Restoration/EEP Number (92372) Mainstem (2275 lf)

Parameter		Pre-Existing Condition			Refe	erence	Read	:h(es)	Data		0	Desigr	١		1	As-bu	ilt/Ba	seline)		
¹ Ri% / Ru% / P% / G% / S%																					
¹ SC% / Sa% / G% / C% / B% / Be%																					
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.2	0.7	2.4	138	216																
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																					
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																					

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary. The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Little Alamance Creek (Burlington Park) Stream Restoration/EEP Number (92372) Unnamed Tributary (450 lf)

Parameter		Pre-Existing Condition			Refe	rence	Read	h(es)	Data		0	Desigr	า			As-bu	ilt/Ba	seline)		
¹ Ri% / Ru% / P% / G% / S%																					
¹ SC% / Sa% / G% / C% / B% / Be%																					
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.2	0.5	3.4	19	53																
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																					
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																					

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary. The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

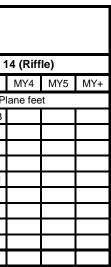

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

				Table	e 11a	. Mor	nitori	ng Da	ata - C	Dimer	nsion	al Mo	rpholo	ogy S	Sumn	nary	(Dim	ensio	nal P	aram	eters	– Cro	ss Se	ectior	าร)										
				l	Little	Alam	ance	Cree	k (Bu	Irling	ton P	ark) S	Stream	n Res	stora	tion/E	EEP	Numb	er (9	2372)	Main	stem	(2275	ilf)											
		С	ross S	ection	1 (Riffl	e)			C	ross S	ection	2 (Poo	I)			C	Cross	Section	1 3 (Po	ol)			Cr	oss S	ection	4 (Riffl	le)			С	ross S	ection	5 (Riffl	e)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used		NA	AD 83 N	C State	Plane f	eet			NA	\D 83 N	C State	Plane fe	eet			N/	AD 83 I	NC State	e Plane	feet			NA	D 83 N	C State	Plane f	eet			NA	AD 83 N	C State	Plane fe	eet	
Bankfull Width (ft)	19.3	19.3	19.63	21.4				35.68	35.68	37.23	39.09				32.55	32.55	33.33	35.39				25.62	25.62	22.6	25.57				19.43	19.43	19.44	16.57			
Floodprone Width (ft)	48.01	48.01	45.1	51.7				73.15	73.2	73.27	73.2				65.21	65.21	65.18	65.2				47.46	47.46	43	39.5				47.21	47.21	44.04	36.08			
Bankfull Mean Depth (ft)	2.46	2.46	2.17	2.37				3.62	3.62	3.67	3.63				2.74	2.74	2.67	2.64				2.09	2.09	1.97	1.8				2.1	2.1	2.17	1.88			
Bankfull Max Depth (ft)	3.26	3.26	2.92	3.36				5.1		5.38	5.6				3.87	3.87	3.91	3.98				2.96	2.96	2.65	2.59				3.15		2.98				
Bankfull Cross Sectional Area (ft ²)	47.41	47.41	42.63	50.8				129	129	136.8	142.1				89.22	89.22	88.97	93.46				53.43	53.43	44.54	45.93				40.83	40.83	42.26	31.1			
Bankfull Width/Depth Ratio	7.85	7.85	9.05	9.04				9.86	9.86	10.14	10.77				11.88	11.88	12.48	3 13.41				12.26	12.26	11.47	14.21				9.25	9.25	8.96	8.81			
Bankfull Entrenchment Ratio	2.49	2.49	2.3	2.41				2.05	2.05	1.97	1.87				2	2	1.96	1.84				1.85	1.85	1.9	1.54				2.43	2.43	2.27	2.18			
Bankfull Bank Height Ratio	1.06	1.06	1.01	1.05				1	1	1	1.03				1	1	1	1				1.75	1.75	1.31	1.28				1	1	1	1			
Cross Sectional Area between end pins (ft ²)	176.8	176.8	172.2	174.8				257.2	257.2	267	250.4				159.1	159.1	158.4	158.5				219.1	219.1	207.7	210.7				141.3	141.3	138.7	135.3			
d50 (mm)	6.21	6.21	3.63	2.0				-	-	-	-				-	-	-	-				2.18	2.18	6.21	1.56				8.37	8.37	7.49	1.4			
		С	ross S	ection	6 (Poo	ol)			С	ross S	ection	7 (Poo	I)			С	ross S	Section	8 (Rif	fle)			Cr	oss S	ection	9 (Riffl	le)			С	oss Se	ction 1	IO (Riff	le)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used		NA	AD 83 N	C State	Plane f	eet			NA	\D 83 N	C State	Plane fe	eet			N/	AD 83 I	NC State	e Plane	feet					C State	Plane f	eet			NA	AD 83 N	C State	Plane fe	eet	
Bankfull Width (ft)	36.6	36.6	40.9	40.98				31.31	31.31	33.33	31.76				34.88	34.88	36.62	38.12				21.79	21.79	25.66	23.84				30.6	30.6	34.3	32.4			
Floodprone Width (ft)	60.21	60.21	60.42	60.2				56.8	56.8	58.36	58.4				65.72	65.72	65.79	65.8				47.34	47.34	52.87	49.87				48.37	48.37	48.37	48.4			
Bankfull Mean Depth (ft)	3.08	3.08	4.25	4.29				3.15	3.15	3.47	3.61				3.08	3.08	3.08	3.18				2.34	2.34	2.45	2.43				2.25	2.25	2.72	3.06			
Bankfull Max Depth (ft)	4.6	4.6	6.19	6.23				4.21	4.21	4.65	4.73				4.6	4.6	4.82	5.23				3.11	3.11	3.51	3.33				3.81	3.81	4.72	4.72			
Bankfull Cross Sectional Area (ft ²)	112.8	112.8	174.2	174.9				98.77	98.77	115.8	114.9							5 121.4				50.91	50.91	62.79	57.88				68.86	68.86	93.13	99.06			
Bankfull Width/Depth Ratio	11.88	11.88	9.64	9.55				9.94	9.94	9.61	8.8				11.32	11.32	11.89) 11.99				9.31	9.31	10.47	9.81				13.6	13.6	12.61	10.59			
Bankfull Entrenchment Ratio	1.65	1.65	1.48	1.47				1.81	1.81	1.75	1.84				1.88	1.88	1.8	1.73				2.17	2.17	2.06	2.09				1.58	1.58	1.41	1.49			
Bankfull Bank Height Ratio	1.38	1.38	1	1.1				1.06	1.06	1	1				1.02	1.02	1	1				1	1	1	1				1.28	1.28	1	1.1			
Cross Sectional Area between end pins (ft ²)	295	295	292.9	285.7				210.6	210.6	197.4	200.6				271.4	271.4	248.8	3 262.1				245.3	245.3	229.9	235.3				162.4	162.4					
d50 (mm)	-	-	-	-				-	-	-	-				5.7	5.7	3.73	0.18				2.22	2.22	4.73	0.09				3.52	3.52	5.36	0.13			

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

Т		4	1	!	Data	D:	!		M	halaa					lanal	Dava			2	Cast	:					_
	idie 1	1a. I	vionit	oring	Data	יווע - ו	iensi	onali	viorp	ποιοί	jy Su	mm	ary (D	imens	sional	Para	imete	rs – (ross	Sect	ions)					
Li	ittle A	lama	nce (Creek	(Bur	lingto	on Pa	rk) St	ream	Rest	oratio	on/E	EEP N	umber	[.] (923	72) U	nnam	ned T	ributa	ary (4	50 lf)					
		С	ross S	ection	11 (Po	ol)			Cr	oss Se	ection '	12 (R	Riffle)			С	ross S	ection	13 (Po	ol)			Cr	oss S	ection '	14
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY	4 MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	Т
Record elevation (datum) used		NA	AD 83 N	C State	Plane f	feet			1	NAD 83	State P	lane	feet			1	NAD 83	State P	lane fee	et			1	NAD 83	State P	'la
Bankfull Width (ft)	15.57	15.57	19.85	19.4				9.91	9.91	10.26	10.17				9.86	9.86	10.49	12.48				10.08	10.08	9.16	12.13	T
Floodprone Width (ft)	24.74	24.74	41.54	39.5				22.32	22.32	22.38	22.57				44.52	44.52	46.56	46.74				36.5	36.2	37.12	37.8	Ι
Bankfull Mean Depth (ft)	0.69	0.69	1.38	1.4				0.86	0.86	0.83	0.91				1.67	1.67	1.61	1.55				1.52	1.52	1.64	1.67	
Bankfull Max Depth (ft)	1.7	1.7	2.78	2.66				1.43	1.43	1.54	1.41				2.91	2.91	3.03	3.03				2.46	2.46	2.71	2.93	
Bankfull Cross Sectional Area (ft ²)	10.73	10.73	27.45	27.17				8.5	8.5	8.5	9.22				16.5	16.5	16.85	19.32				15.37	15.37	15	20.31	
Bankfull Width/Depth Ratio	22.57	22.57	14.38	13.88				11.52	11.52	12.36	11.18				5.9	5.9	6.52	8.05				6.63	6.63	5.59	7.26	
Bankfull Entrenchment Ratio	1.59	1.59	2.09	2.03				2.25	2.25	2.18	2.22				4.51	4.51	4.44	3.75				3.59	3.59	4.05	3.12	
Bankfull Bank Height Ratio		1	1	1				1	1	1	1				1	1	1	1				1.19	1.19	1.1	1	
Cross Sectional Area between end pins (ft ²)	113.4	113.4	110.8	112.4				76.3	76.3	74.7	77.4				133.6	133.6	129.9	130.4				60.3	60.3	54.3	54.4	Ι
d50 (mm)	-	-	-	-				5.21	5.21	7.42	2.43				-	-	-	-				3.3	3.3	4.0	5.32	

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acc for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculate Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

													xhibit T												10										
											Alamar	ice C	reek (Bı	irlingto	n Park)	Strean	ו Res	toratio	on/EEP	Numbe	r (9237	2) Main	nstem (2275	lt)					-]
Parameter			Baseli	ne					MY	-1					MY-2	2					MY-	3					MY-	4					MY- 5		
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n N	/lin IV	/lean M	/led M	ax S	D ⁴ n
Bankfull Width (ft)	19.3	26.3	23.71	36.6	6.7	6	19.3	26.3	23.71	36.6	6.7	6	19.4	26.4	24.13	36.62	7.4	6	16.57	26.32	24.71	38.12	7.8	6											
Floodprone Width (ft)	47.2	52.7	47.74	65.7	7.8	6	47.2	52.7	47.74	65.7	7.8	6	43	49.86	46.74	65.8	8.6	6	36.08	45.56	49.14	65.8	10.5	6											
Bankfull Mean Depth (ft)	2.09	2.53	2.3	3.08	0.36	6	2.09	2.53	2.3	3.08	0.36	6	1.97	2.43	2.31	3.08	0.41	6	1.8	2.45	2.4	3.18	0.58	6											
¹ Bankfull Max Depth (ft)	2.96	3.61	3.19	4.6	0.64	6	2.96	3.61	3.19	4.6	0.64	6	2.65	3.6	3.245	4.82	0.94	6	2.59	3.64	3.35	5.23	1.1	6											
Bankfull Cross Sectional Area (ft ²)	40.83	68.78	52.17	112.77	24.7	6	40.83	68.78	52.17	112.77	24.7	6	42.26	66.34	53.665	112.64	29.9	6	31.1	67.69	54.34	121.36	34.8	6											
Width/Depth Ratio	7.85	10.31	10.32	12.26	2.4	6	7.85	10.31	10.32	12.26	2.4	6	8.96	10.74	10.97	12.61	1.5	6	8.81	10.74	10.2	14.2	2.1	6											
Entrenchment Ratio	1.645	2.079	2.02	2.488	0.37	6	1.645	2.079	2.02	2.488	0.37	6	1.41	1.96	1.98	2.3	0.33	6	1.49	1.91	1.91	2.4	0.4	6											
¹ Bank Height Ratio	0.99	1	1	1.01	0.006	6	0.99	1	1	1.01	0.006	6	0.98	0.995	0.992	1.00	0.01	6	1	1.07	1.03	1.28	0.1	6											
Profile																																			
Riffle Length (ft)	62	159.33	137.16	353.24	119.9	5	62	159.33	137.16	353.24	119.9	5	26.55	52.64	42.12	101.02	29.9	5	37.37	97.15	96.3	209.34	70.18	5											
Riffle Slope (ft/ft)	0.0001							0.003326				5	0.00389	0.0116	0.0133	-	0.007	5		0.00516				5										-	
Pool Length (ft)	37.58	99.32	90.19	182.26	44.37	14	37.58	99.32	90.19	182.26	44.37	14		124.2	132.17	217.92		14	46.9	102.84	81.03	217.65	58.7	14										-	
Pool Max depth (ft)	3.03	4.4	4.525	5.91	0.827	14	3.03	4.4	4.525	5.91	0.827	14	1.3	2.45	2.63	3.21	0.96	14	1.65	2.72	2.59	3.76	0.573	14										-	
Pool Spacing (ft)	48.85	147.39	92.07	347.97			48.85	147.39		347.97	115.5	9	31.69	86.5	69.97	214.55		9	14.24	71.27	40.31	167.91	54.02	9										-	
Pattern									-																										
Channel Beltwidth (ft)	87.3	233		462																															
Radius of Curvature (ft)	51.2	118.8		280.7																															
Rc:Bankfull width (ft/ft)	2	4.5		10.7											P	attern data	will not	typically	be collecte	d unless vi	sual data, from bas		nal data or	r profile	data ind	icate sig	nificant	shifts							
Meander Wavelength (ft)	436.2	454.6		475.2																															
Meander Width Ratio		17.3		24.1																															
Additional Reach Parameters	_																																		
Rosgen Classification	r		E4			<u> </u>			E4						E4						E4									_					
Channel Thalweg length (ft)			2673						267						2673						267;														
Sinuosity (ft)			1.6						1.6						1.6						1.6														
Water Surface Slope (Channel) (ft/ft)			0.0024						0.002						0.0024						0.002														
BF slope (tt/ft)			0.002-						0.002						0.002						0.002														
³ Ri% / Ru% / P% / G% / S%			0.0020	 					5.002	, [0.0020	Ĭ					0.002				Т	T	Г				Т		\neg	$\neg \neg$	
³ SC% / Sa% / G% / C% / B% / Be%																				<u> </u>		<u> </u>	╎┤										-+-	+	_
³ d16 / d35 / d50 / d84 / d95 /																																	$\neg \uparrow$	+	
² % of Reach with Eroding Banks														8	I		I				1		<u> </u>			1					I				
Channel Stability or Habitat Metric																																			
Biological or Other																																			
Shaded cells indicate that these will typically not be	filled in						1																												

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table
 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
 4. = Of value/needed only if the n exceeds 3

												-							a - Stre						
									Liti	tle Ala	aman	ce Ci	reek (Bu	irlingto	on Pai	'k) Stro	eam R	estor	ation/E	EP Nu	Imber	⁻ (9237	2) Un	name	ed T
Parameter			Bas	eline					M	Y-1					MY	-2					MY	• 3			
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Mi
Bankfull Width (ft)	9.86	9.89		9.91			9.86	9.89		9.91			9.16	9.71		10.26			10.17	11.15		12.13			
Floodprone Width (ft)	8.5	12.5		16.5			8.5	12.5		16.5			22.38	29.75		37.12			22.57	30.185		37.8			
Bankfull Mean Depth (ft)	0.86	1.27		1.67			0.86	1.27		1.67			0.83	1.24		1.64			0.91	1.29		1.67			
¹ Bankfull Max Depth (ft)	1.43	2.17		2.91			1.43	2.17		2.91			1.54	2.13		2.17			1.41	2.17		2.93			
Bankfull Cross Sectional Area (ft ²)	8.5	12.5		16.5			8.5	12.5		16.5			5.33	9.18		12.36			9.22	14.765		20.31			
Width/Depth Ratio	5.9	8.71		11.5			5.9	8.71		11.5			4.05	8.21		12.36			7.26	9.22		11.18			
Entrenchment Ratio	2.25	3.38		4.52			2.25	3.38		4.52			1.1	1.64		2.18			2.22	2.67		3.12			
¹ Bank Height Ratio	0.99	1.27		2.56			1	1.27		2.56			1	1.29		1.6			1	1		1			
Profile																									
Riffle Length (ft)	27	41.9	Ι	59.9	Γ		27	41.9		59.9	1		15.83	29.07		61.12			14.82	34.85		54.87			
Riffle Slope (ft/ft)	0.01	0.01		0.02			0.01	0.01		0.02			0.003	0.022		0.046			0.011	0.022		0.034			
Pool Length (ft)	13	28.2		61			13	28.2		61			8.2	16.84		23.12			11.04	24.13		37.21			
Pool Max depth (ft)	0.74	2.06		3.26			0.74	2.06		3.26			0.63	1.33		2.22			1.08	1.25		1.41			
Pool Spacing (ft)	12.5	30.1		60.6			12.5	30.1		60.6			12.03	14.78		14.88			13.41	27.86		42.32			
Pattern										<u>.</u>															
Channel Beltwidth (ft)	5.5	10.4		19					1																
Radius of Curvature (ft)		15.8		31.3												_									
Rc:Bankfull width (ft/ft)		1.78		2.02												Patte	rn data w	/ill not ty	pically be			visual dat ts from b		nsional (data (
Meander Wavelength (ft)		172		209										<u> </u>						0.9			ucomio		
Meander Width Ratio		-		1.92										<u> </u>											
			1	1	1	1						1									1				
Additional Reach Parameters																									
Rosgen Classification			E	4					E	4					Έ	1					Е·	4			
Channel Thalweg length (ft)			4	26					4	26					42	6					42	6			
Sinuosity (ft)			1	.02					1.	02					1.0	2					1.0	2			
Water Surface Slope (Channel) (ft/ft)			0.0	0758					0.00)758					0.007	766					0.00	755			
BF slope (ft/ft)			0.0	0728					0.00)728					0.007	' 54					0.00	766			
³ Ri% / Ru% / P% / G% / S%																									
³ SC% / Sa% / G% / C% / B% / Be%																									
³ d16 / d35 / d50 / d84 / d95 /																									
² % of Reach with Eroding Banks			-		-					-				-	-		_	-		-					
Channel Stability or Habitat Metric																									
Biological or Other																									
Shaded cells indicate that these will twoically not be	- CH																								

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3

Tri	butar	y (450) If)								
		MY						MY	- 5		
lin	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n
	orofile da										
or p			ale								
_											

Appendix E: Hydrologic Data

Table 12: Verification of Bankfull Events Figure 9: Monthly Rainfall Data Crest gauges were installed during MY1 field work to record up to 1.82ft above bankfull. In July of MY2, there was a short period of several heavy rainfall events which resulted in Little Alamance Creek and UT1 overtopping the crest gauges. In MY3, the mainstem experienced flooding that overtopped the crest gauge. The UT was able to collect reportable data (Table 12). Photographs of MY2 storm event are shown below.

Date of Data Collection	Date of Occurrence	Method	Stream ID	Height above Bankfull
7/3/2013	7/3/2013	Photos*	Little Alamance Creek	>1.82ft
7/3/2013	7/3/2013	Photos*	Unnamed Tributary	>1.82ft
09/29/2014	Unknown	Crest Gauge	Little Alamance Creek	>1.82ft
09/29/2014	Unknown	Crest Gauge	Unnamed Tributary	1.17ft

Table 12. Verification of Bankfull Events

* Refers to photographs of the July 2013 storm event shown at the beginning of Appendix E.

July 2013 Storm Event

View of Rail Road at PS1 July 3, 2013

View of water gauge on main tributary July 3, 2013

View from XS 7 July 3, 2013

Bridge at XS 5 July 3, 2013

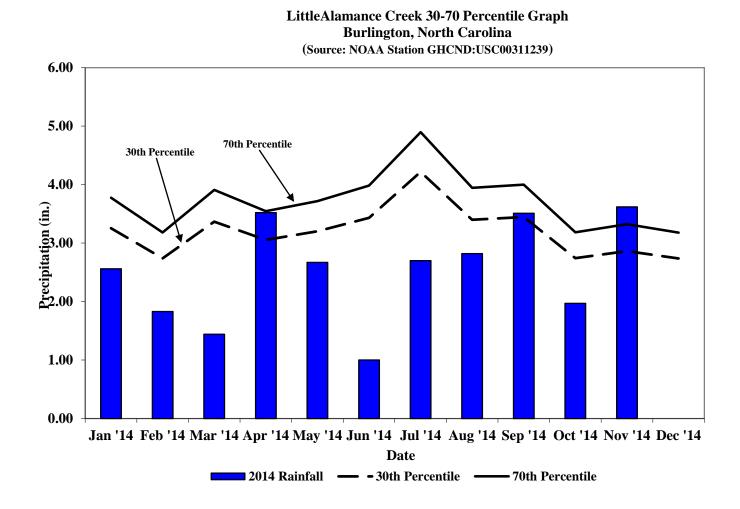
View of Bridge at XS 4 July 3, 2013

View from PS 2, level spreader July 3, 2013

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 3 of 5; Submitted: December 2014

Final Appendix E

Crest Gauge Photographs 2014


Crest gauge, main stem. Cork overtopped gauge. September 29, 2014

Crest gauge, UT. Cork at 3.35ft. September 29, 2014

Appendix E

Figure 9: Monthly Rainfall Data

Little Alamance (Burlington Park) Stream Restoration; NCEEP Project No. 92372; NCEEP Contract No. 4998; Monitoring Year 3 of 5; Submitted: December 2014 Final

Appendix E